Homework 3

1 For constant vectors $m \in \mathbb{R}^{n}, b \in \mathbb{R}$ and linear function $F: \mathbb{R}^{n} \rightarrow \mathbb{R}$ linear defined as

$$
F(x)=x^{t} m+b
$$

(here x^{t} denotes the transpose of x) show $\nabla F=m$
2 Again let m, b be constant vectors and let Σ be a real symmetric matrix, define a quadratic function as

$$
F(x)=x^{t} \Sigma x+m^{t} x+b
$$

show $\nabla F=2 \Sigma x+m$.
(Yes I switched $x^{t} m$ and $m^{t} x$ on purpose \ldots the order doesn't matter)

Many securities - risk and return

Suppose you are given the following securities ... $S_{i}(0) \equiv 100$

Ω	$S_{1}(1)$	$S_{2}(1)$	$S_{3}(1)$	\mathbb{P}
ω_{1}	120	135	90	$1 / 5$
ω_{2}	110	100	95	$1 / 5$
ω_{3}	100	90	110	$2 / 5$
ω_{4}	90	135	120	$1 / 5$

3 Find the covarance matrix Σ and expected return m of the return variables K_{i} for $i=1.2 .3$.

Many securities - feasible set

Suppose you have found the following Σ and m for return variables $K_{i}, i=1.2 .3$

$$
\Sigma=\left(\begin{array}{ccc}
5 & -2 & -1 \\
-2 & 3 & -1 \\
-1 & -1 & 2
\end{array}\right) \frac{1}{100} ; \quad m=\left(\begin{array}{c}
.1 \\
.5 \\
1.5
\end{array}\right)
$$

4 For each 2 security submarket $\left(K_{1}, K_{2}\right),\left(K_{2}, K_{3}\right),\left(K_{1}, K_{3}\right)$, find the minimal variance portfolio and the asymptotes of the feasible set. Graph the 3 feasible sets.

5 For the entire market, find the minimal variance portfolio, minimal variance line, and asymptotes of minimal variance line.

6 Compare these subsystems to the entire market system ie graph all systems together.
7 Suppose we add a risk free bond to the above example at return $R=.05$ Find the market portfolio and the capital market line.

