
Review

1 Linear Algebra Review

• Review definitions of eigenpairs

• Find eigenvalues.

• Conditions to diagonalize a matrix.

1.1 The matrix and its eigenpairs

Any n × m matrix A, written A ∈ Rn×m, is associated to a linear transformation from Rm to Rn.
EG, the linear transformation T mapping R2 to R3 so that T maps (0, 1)T to (0, 1, 2)T and (1, 0)T to
(3, 4, 5)T has associated matrix A ∈ R3×2,

A =

3 0
4 1
5 2


in this case we say the 2, 1 entry of A is A2,1 = 4

Let us write In to be the n× n identity matrix, that is (In)i,j = 0 if i 6= j and (In)ij = 1 for i = j
for all 1 ≤ i, j ≤ n. For A ∈ Rn×m, InA = A. The inverse matrix of A is the matrix (if it exists) A−1

so that AA−1 = In.
Given a matrices A ∈ Rn×n we may ask if it is invertible, which is equivalent to the associated

linear transformation being invertible. A is invertible if the equation Ax = 0 has only the trivial
solution x = 0, if Ax = 0 has more than one solution we say it is singular.

The eigenpairs of A ∈ Rn×n are pairs (v, λ) ∈ Rn × R so that Av = λv. Here λ is an eigenvalue
and v is an eigenvector. The matrix A is invertible if λ is not an eigenvalue for any v.

Given an eigenvalue λ, the geometric multiplicity is the number of linearly independent eigenvectors
v that may be associated to λ.

The eigenvalues are exactly the solutions to the characteristic polynomial of the matrix. The
characteristic polynomial of A is

p(t) = det(tIn − A)

The algebraic multiplicity for an eigenvalue λ is the largest q so that (t−λ)q divides p(t). The geometric
multiplicity of an eigenvalue is at least as great as its algebraic multiplicity.

1.2 Diagonalization

A diagonal matrix is a matrix D ∈ Rn×n so that Dij = 0 for i 6= j. Let us write D = diag(d1, ..., dn)
for the diagonal matrix D with Dii = di.
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We say the matrix A is diagonalizable if there exists a diagonal matrix similar to A. That is there
is a matrix M so that

M−1AM = D.

The matrix A is diagonalizable if and only if the algebraic multiplicity of each eigenvalue is equal to
it’s geometric multiplicity.

Let us give sufficient conditions for diagonalizability. The matrix A ∈ Rn is diagonalizable if there
are n distinct eigenvalues - equivalently the algebraic multiplicity of each eigenvalue is 1.

1.3 Symmetric matrices

The transpose of a matrix A is the matrix AT defined so that (AT )ij = Aji. A real matrix is self
symmetric if AT = A. Real symmetric matrices are diagonalizable and their eigenvalues are real.

The diagonalization of a real symmetric matrix A can be written as A = OTDO, where D =
diag(λ1, .., λn) and O is orthogonal so that OTO = In. Recall orthogonal matrices are matrices O so
that the column (or row) vectors of O form an orthonormal basis of Rn.

If v1 and v2 are eigenvectors of a real symmetric matrix with eigenvalues λ1 6= λ2 then (v1, v2) = 0,
that is, v1 and v2 are perpendicular.

positive / positive definite If all eigenvectors λi are nonnegative λi ≥ 0 then for any v ∈ Rn,
vtAv ≥ 0. In this case we say that A is positive semidefinite.

If all eigenvectors λi are positive λi > 0 then for any v ∈ Rn, vtAv > 0. In this case we say that A
is positive definite.

We see below that the covariance matrix of an n-tuple of random variables is a positive definite
matrix.

2 Probability Review

• Definition - Probability space + Random variables + Examples

• PDF and CDF

• Expectation

• Joint distribution

• Marginal distribution

• Independent Random Variables

• Moments, Variance, Covariance

• Conditional Random Variables / Distribution

• Large numbers + CLT
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2.1 Definitions

Let us carry out an experiment. On day zero, say the price of a stock is $100, (set S0 = 100) let us
suppose that every day the price of the stock will change by $1. On the first day, flip a coin, if it is
heads the stock rises it’s price by $1, (S1 = 101) if it is tails the stock lowers it’s price by $1 (S1 = 99).
Of course in ‘real life’ the stock doesn’t change value according to a coin flip, but to volume of trading
and updated market for forecasts etc but we can simplify to a coin flip. Repeat the experiment up to
day 10.

We can expect the experiment to generate a ‘word’ w1, .., w10 where wi = H if the coin flip comes up
‘heads’ on the ith day and wi = T if the coin flip comes up ‘tails’ on the ith day. We have a sequence of
stock prices S0, .., S10 on each day and price changes Xi = Si−Si−1; equivalently, Si = Xi+· · ·+X1+S0

Notice the different variables depend on different sets of information. Xi depends only on the
outcome of the ith flip wi; in other words Xi is a function of wi, written Xi = Xi(wi). Si depends on
the first i flips, thus Si = Si(w1, .., wi).

We formalize this setup in the definition.

2.1.1 Probability space

The definition of probability space requires several parts

(1.) Sample space Ω containing all outcomes of the experiment.

In the above example, Ω is the set of all outcomes of experiments,

Ω = {(w1, .., w10) : wi = T,H}

– A State space is an image of a function on Ω.

In the above example: We may use a common state space V = {−1, 1} for all
the Xi so that Xi is a function on Ω taking values in V . We have a state space
W = N, for all the Si so that Si is a function on Ω taking values in W .

(2.) A σ-algebra is a collection F of the subsets of Ω, which obeys the following,

– If A,B ∈ F then A ∪B ∈ F
– If A ∈ F then Ω\A ∈ F .

– F must contain both Ω and ∅.

If we only were interested in a single (discrete) random variable, it would be sufficient for us to
simply take F to be the set of all subsets of Ω. There is a practical reason to do more with
σ-algebras which we will discuss shortly.

(3.) A Probability measure is a function P : F → [0, 1] so that

– For all A ∈ F , 0 ≤ P(A) ≤ 1.

– For (Ei)
∞
i=1 a subcollection of disjoint sets of F we have P(∪iEi) =

∑
i P(Ei).

– P(∅) = 0 and P(S) = 1.

The σ algebra F may simply be understood as the desired refinement of information.
This point of view is helpful when we introduce sequences (a filtration) of σ algebras which
model the increasing information over time.
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In simple cases it is often sufficient to identify the sample space and the state space, for instance
for a random variable X so that P(X = 1) = p and P(X = 0) = 1− p. Then we may define the state
and sample space to be S = {0, 1}, then X(0) = 0 and X(1) = 1 - so that we have P({i}) = P(X = i).
As we have seen it may be useful to make a distinction between the sample space and the state spaces
in the case that several random variables depend on the same outcomes.

2.1.2 Random Variables

As discussed above, a random variable X is a function on the sample space Ω, which takes values in
the state space S, for example in S = Rn for n ≥ 1. Let us write X : Ω→ S in this case, which means
X is a function with Domain Ω and Range S. That is, we need a probability space defined by a triple
(Ω,F ,P) and a function X : Ω→ S.

Let us recall standard examples of random variables and construct the associated probability space.
Example: (Bernoulli Trial)

Recall a Bernoulli trial is a model of a (weighted) coin flip, which returns a one if the flip turns up
head and returns a zero if the flip turns up tails. Lets go through the full construction. Lets call
Ω = {H,T}, and F = {∅, {T}, {H}, {H,T}}, which in this case is the full power set of S. Define
P(T ) = q and P(H) = p.

From 2.1.1 rule (3), we have 1 ≥ p, q ≥ 0 and p+ q = 1.
Let X : S → {0, 1}, defined by X(T ) = 0 and X(H) = 1. Thus the probability X is 1 is given by

P(X = 1) = P (X−1(1)) = P ({H}) = p

We use the notation X ∼ B(p) to say X is a Bernoulli variable with probability p of returning 1.

Example: (Binomial)

A Binomial random variable is a model of flipping n identical independent weighted coins and counting
the total number of heads.

The set of outcomes of n coin flips is the set

Ω = {ω = (ω1, .., ωn) : ωi = H,T for i = 1, .., n}

The σ algebra F can be taken to be the set of all subsets of Ω, ie the power set of Ω.
We will assume each coin flip is independent of the others and each flip is head with probability p.

Then for a word (w1, .., wn) with wi = H,T we have

P(w1, ..., wn) = P(w1) · · ·P(wn)

where P(wi) = p for wi = H and P(wi) = 1− p for wi = T .
Similar to the example in the definition let us define random variables Xi : Ω→ {0, 1} by

Xi(ω) =

{
1 for ωi = H
0 for ωi = T

.

Let P(Xi = 1) = p, for 0 < p < 1.
Then define Y by

Y = X1 + · · ·+Xn

which counts the number of total heads. The probability distribution of Y is given by

P(X = k) =

(
n

k

)
pk(1− p)n−k
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Example: (Geometric distribution)

The geometric distribution is an experiment in flipping a series of coins. The value of the random
variable Y is flip number of the first head.

The set of outcomes is the set,

Ω = {ω = (ω1, ω2, ..) : ωi = H,T for i = 1, 2, ...}.

Notice it is possible that the experiment does not end in a fixed amount of time, that is it might not
end by flip 100. Let us construct σ - algebras that model the amount of information we have after
a given amount of time. Let Fi be the σ algebra resolving the information up to the ith flip. Notice
Fi ⊂ Fi+1, that is, the information we get after every flip is increasing. It suffices to consider the σ
algebra F = ∪iFi. Note that F resolves the information of the experiment up to any finite time.

For any finite word (w1, .., wn) with wi = H,T for i = 1, .., n let us define the set

Aw1,..,wn = {ω ∈ Ω : ωi = wi for i = 1, .., n}.

Let us again assume the probability of a head is p, and each trial is independent, so that

P(Aw1,..,wn) = P(w1) · · ·P(wn)

and P(wi) = p if wi = H and P(wi) = 1− p if wi = T .
The event {Y = k} is then the event of the first k − 1 flips being tails and the kth being head,

{Y = k} = AT...TH︸ ︷︷ ︸
with k−1 Ts

Thus

P({Y = k}) = P

 AT...TH︸ ︷︷ ︸
with k−1 Ts

 = (1− p)k−1p

Mass function and cumulative distribution - Discrete A more common - often more useful -
way to introduce a random variable is by it’s density function, in this case the above probability space
is implicit (or the Sample space is identified with the State space).

Ie if the Sample space is identified with the state space Ω = S, F is the power set of S.
In the discrete case, with random variable X and state space S ⊂ R, for any x ∈ S define mass

function p
p(x) = P({x}) = P(X = x)

We can define the cumulative distribution,

FX(x) = P({−∞, x}) = P(X ≤ x).

Example: (Bernoulli Trial - part 2)
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We can define the cumulative and density distribution of X. The density, fX(0) = q and fX(1) = p.
The cumulative distribution is,

FX(x) =


0 x < 0,

q 0 ≤ x < 1

1 x ≥ 1

Density function and cumulative distribution - Continuous Let us take S = Ω = R. The
σ algebra is a bit technical but it is enough to know it contains intervals [a, b], unions of intervals
∪i[ai, bi] etc.

Let X be a continuous random variable with probability density function, fX , then

P(a < X ≤ b) =

∫ b

a

fX(x)dx

Notice fX must obey ∫ ∞
−∞

fX(x)dx = P(X ∈ R) = 1

Let us define the cumulative distribution function,

FX(x) =

∫ x

−∞
fX(s)ds

Example: (Gaussian/Normal)

Let Z ∼ N(µ, σ2) be a Normal random variable with mean µ and variance σ2. The standard Normal
is defined as Z ∼ N(0, 1).

The density function of the Gaussian/Normal Z ∼ N(µ, σ2) is

φ(x) =
1

σ
√

2π
e−(x−µσ )

2

so that

P(Z ≤ z) =

∫ z

−∞
e−( s−µσ )

2 ds

σ
√

2π

2.2 Expectation

The most important quantity to measure a random variable is the expectation. We’ll define this in
the case of S ⊂ R.

Lets use the probability space definition to define the expectation,

E(X) =
∑
x∈S

xP({x}) =
∑
ω∈Ω

X(ω)P({ω}).

On the other hand, if we use a mass function,

E(X) =
∑
x∈S

xp(x)
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In the continuous case:

E(X) =

∫
R
xfX(x)dx

Example: (Continuous ‘triangular’ distribution)

Consider X given by density fX(x) = 2x for 0 ≤ x ≤ 1. Find the expectation,

E(X) =

∫ 1

0

xfX(x)dx =

∫ 1

0

x(2x)dx =
2x3

3

∣∣∣∣1
0

=
2

3

2.2.1 Tail sum formula

In this section we demonstrate a formula for the expectation of a nonnegative random variable
If X is a nonnegative random variable with cumulative distribution FX then

FX(x) = 0

for all x < 0. If X is continuously distributed with density fX then fX(x) = 0 for all x < 0.
If X is a non negative random variable we can calculate the expectation

E(X) =

∫ ∞
x=0

xfX(x)dx =

∫ ∞
x=0

∫ x

t=0

fX(x)dtdx =

∫ ∞
t=0

∫ ∞
x=t

fX(x)dxdt =

∫ ∞
t=0

[1− FX(t)]dt

we therefore have the formula,

E(X) =

∫ ∞
t=0

[1− FX(t)]dt =

∫ ∞
t=0

P(X > t)dt

This formula is valid for discrete nonnegative random variables as well.

E(X) =
∞∑
k=0

P(X > k) =
∞∑
k=0

kp(k)

Example: (Geometric distribution)

Suppose X is a geometric random variable for coin flips with probability of success p, p + q = 1 and
P(X = k) = qk−1p. Let’s calculate the expectation using the tail sum formula.

So

P(X ≤ k) = p+ qp+ ...+ qk−1p =
1− qk

1− q
p = 1− qk

So P(X > k) = qk Now we have,

E(X) =
∞∑
k=0

P(X > k) = 1 + q + q2 + · · · = 1

1− q
=

1

p
.
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3 Random Variables with joint distribution

Suppose Z takes on values in S = R2, then we can write Z = (X, Y ) where there is some joint density
function fX,Y : R2 → R+ where R+ = [0,∞). Then for A ⊂ R2, we have

P(Z ∈ A) =

∫ ∫
(x,y)∈A

fX,Y (x, y)

Let us use the notation χ(z) = χP (z) where P (z) is some truth/false statement, such as P (z) is is
the statement |z| < 1. χ is a function so that χP (z) = 1 when condition P (z) is true and χP (z) = 0
otherwise.

For example for A ⊂ R2

χz∈A =

{
1 z ∈ A
0 z /∈ A

Example: (Uniform distribution on a triangle)

Consider Z = (X, Y ) ∼ U(A) where A is the triangle A = {(x, y) : 0 ≤ y ≤ x ≤ 1}. The area of the
triangle is |A| = 1/2. Thus Z has the density fZ(z) = 2χz∈A. Equivalently, (X, Y ) has joint density
fX,Y (x, y) = 2χ(x,y)∈A

Remark Suppose X is uniformly distributed on the set A ⊂ R2. Suppose A has area |A|. Then for
any B ⊂ A it holds that P(X ∈ B) = |B|/|A|.

Conversly if X is a random variable taking values in a set A ⊂ R2 so that there is a c > 0 so that
the probability X is in B for any B ⊂ A is P(X ∈ B) = c|B| then X is uniform and c = 1/|A|.

Cumulative density We can define cumulative distribution as usual
FX,Y (x, y) = P(X ≤ x; Y ≤ y).

If the density fX,Y exists (the variable Z = (X, Y ) is continuously distributed) then,

FX,Y (x, y) =

∫ x

−∞

∫ y

−∞
fX,Y (u, v)dudv

so
d2

dxdy
FX,Y = fX,Y

Example: (Two day stock price)

Suppose the value of a stock on day zero (today) is S0 = 3/2 on day one the stock value S1 is uniformly
distributed on an interval of length one centered at 3/2 ie uniformly distributed on [1, 2]. Suppose
the value on the second day S2 is uniformly distributed over an interval of length one centered at the
value of day 1.

We can write independent variables Ui ∼ U [−.5, .5] for i = 1, 2. Then S1 = 1.5 + U1, and
S2 = S1 + U2.

The support of the distribution of (S1, S2) in R2 is a parallelogram with vertices (1, 0.5), (1, 1.5), (2, 1.5)
and (2, 2.5). fX1,X2(x1, x2) = 1 for (x1, x2) on the interior of the parallelogram and 0 otherwise.

Is the distribution of (S1, S2) uniform in R2 ?
Notice (

S1

S2

)
=

(
1.5 + U1

1.5 + U1 + U2

)
=

(
1.5
1.5

)
+

(
0 1
1 1

)(
U1

U2

)
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A linear transformation of a uniform distribution is uniform. X
Thus if A is the parallelogram described above, then f(s1, s2) = χ(s1,s2)∈A is the joint distribution.

(The area of the parallelogram is 1 so we don’t need a normalizing factor in front.)
Notice S2 however is distributed from 0.5 to 2.5. Is it uniformly distributed?

Day to day prices of stock are marginal distributions of the process of stock prices.
Ie if stock prices over 10 days is a random variable (S1, S2, ...S10) ∈ R10 then the price on day 9,

S9 is a marginal random variable, what is it’s distribution?

3.1 Marginals

In the discrete case, for bivariate random variable Z = (X, Y ) with probability mass function fX,Y ,
the formula for marginal density is

fX(x) =
∑

y:(x,y)∈S

P[(X, Y ) = (x, y)].

Similarly for the continuous case, where fX,Y is joint density, the marginal density is

fX(x) =

∫
y∈R

fX,Y (x, y)dy

Example: (Continuous example)

Let A = {(x, y) : 0 ≤ y ≤ x ≤ 1}.
Define the density of the variable (X, Y ),

f(X,Y )(x, y) = 6yχ(x,y)∈A

Find the marginal distributions. Find the expectation of each variable.

marginals Compute the X marginal,∫
R
f(X,Y )(x, y)dy =

∫ x

0

6ydy = 3x2

thus

fX(x) =

{
3x2 for x ∈ (0, 1)
0 for x /∈ (0, 1)

Compute the Y marginal, ∫
R
f(X,Y )(x, y)dx =

∫ 1

y

6ydx = 6y(1− y)

thus

fY (y) =

{
6y(1− y) for x ∈ (0, 1)

0 for x /∈ (0, 1)
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expectations Let us calculate the expectation of X using the marginal distribution,

E(X) =

∫
R
xfX(x)dx = 3/4

Let us calculate the expectation of Y using the joint distribution,

E(Y ) =

∫ ∫
R2

yfXY (x, y)dxdy =

∫ 1

0

∫ x

0

6y2dydx =

∫ 1

0

2x3dydx = 1/2

3.2 Sums

We wish to consider the special examples of sums of random variables.
Example: (Two day stock price – part 2)

We continue the example above. Let us find the density of S2.

fS2(s2) =

∫
y∈R

fS1,S2(y, s2)dy =


0 2.5 < s2

−s2 + 2.5 1.5 < s2 ≤ 2.5

s2 − 0.5 0.5 < s2 ≤ 1.5

0 s2 ≤ 0.5

Thus, S1 and (S1, S2) are uniform but S2 is not uniform.
By symmetry it is easy to see that E(S2) = 3/2.

3.3 Independent Random Variables

Variables X and Y taking values in S are independent if, for all A,B ⊂ S, we have

P(X ∈ A;Y ∈ B) = P(X ∈ A)P(Y ∈ B)

For S = R, in terms of cumulative distributions, x, y ∈ R we have

FX,Y (x, y) = P(X ≤ x;Y ≤ y) = P(X ≤ x)P(Y ≤ y) ≤ FX(x)FY (y)

If F is differentiable we can define the density. If X, Y are independent, the density is multiplicative,
ie,

fX,Y (x, y) = fX(x)fY (y)

the same holds for probability mass.
A corollary of this representation is that for X, Y independent random variables we have

E(XY ) = E(X)E(Y ).

Indeed,

E(XY ) =

∫
R

∫
R
xyfXY (x, y)dxdy =

∫
R
xfX(x)dx

∫
R
yfX(y)dy = E(X)E(Y )
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4 Derived random Variables

Given random variable X, define probability for a random variable Y = g(X).
The cumulative here is defined as

FY (y) =

∫
x:g(x)≤y

fX(x)dx

Suppose for every y an interval of (y − ε, y + ε) exists so that there are local functions (xi) so that
g(xi(y

′)) = y′ for y′ ∈ (y − ε, y + ε). Then the derivative of the cumulative density,

fY (y) =
d

dy
FY (y) =

∑
i

fX(xi(y))

∣∣∣∣ ddy [xi(y)]

∣∣∣∣
Example: (Square of uniform)

Let X ∼ U([−2, 2]) and Y = X2. Calculate the CDF and PDF.
Then for 0 ≤ y ≤ 4,

FY (y) = P(X : X2 ≤ y) =

∫ √y
−√y

(1/4)dx =
2
√
y

4
.

Let x±(y) = ±√y, then

fY (y) = fX(+
√
y) |(+√y)′|+ fX(−√y) |(−√y)′| = 1

4
√
y

for 0 < y < 4, and 0 otherwise.

4.1 Moments

The moments of the random variables are the expectations of powers of the random variables The kth

moment of X is

E(Xk) =

∫
R
xkfX(x)dx

The kth central moment is

E([X − E(X)]k) =
∑
i

(−1)i
(
k

i

)
E(X i)[E(X)]k−i

4.1.1 Variance

Of course the most important central moment is the second. It is known as the variance,

V ar(X) = E[(X − E(X))2] = E(X2)− [E(X)]2 =: σ2
X

The square root of the variance is the Standard deviation

σX =
√
var(X)

Recall these helpful properties of variance:
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1 For a, b ∈ R, we have var(aX + b) = a2var(X).

2 For X1, X2 independent random variables var(X1 +X2) = var(X1) + var(X2)

3 ForX1, X2 independent random variables var(X1X2) = var(X1)var(X2)−µ2
X1
var(X2)−µ2

X2
var(X1).

As a corollary, if µX1 = µX2 = 0 then var(X1X2) = var(X1)var(X2).

Example: (Two day stock price)

Let us find the variance of S1 and S2. Define Ui ∼ U [−.5, .5] for i = 1, 2. Let S1 = 3/2 + U1 and
S2 = S1 + U2.

Thus
var(S1) = var(U1) = 1/12

having used property 1 and that for U ∼ U [a, b] that var(U) = [b− a]/12 .
On the other hand the variance for S2 is,

var(S2) = var(
1

2
+ U1 + U2) = var(U1) + var(U2) = 1/6.

having used property 1 and 2.

5 Covariance

Let X and Y be random variables. We may assume there is a joint density fX,Y ( or joint mass pX,Y )
define the covariance

cov(X, Y ) = E[(X − µX)(Y − µY )]

for µX = EX and µY = EY .
We can easily derive cov(X, Y ) = E(XY ) − µXµY . Notice as well cov(X, Y ) = cov(Y,X) and

var(X) = cov(X,X).
Define the covariance matrix

Σ = ΣX,Y =

(
var(X) cov(X, Y )
cov(X, Y ) var(Y )

)
Let Z = aX + bY then (verify this)

var(Z) = cov(aX + bY, aX + bY ) = a2varX + 2ab cov(X, Y ) + b2var(Y ) =
(
a b

)
Σ

(
a
b

)
In particular, for Z = X + Y we have var(Z) = var(X) + 2cov(X, Y ) + var(Y )

n-variables This discussion generalizes to a set of n jointly distributed random variables X1, ..., Xn.
Thus for the covariance matrix Σ defined by Σij = cov(Xi, Xj). The matrix Σ is positive semidefinite.

For Z = v1X1 + · · ·+ vnXn the variance of Z is var(Z) = vTΣv ≥ 0.
It follows that Σ has the property that for all v ∈ Rn we have vTΣv ≥ 0. This property is known

as positive semidefinite.
Moreover, Σ is real and symmetric so that Σ = ODOT where the matrices O are orthogonal and

D is diagonal - with entries being the eigenvalues of Σ. As Σ is positive definite, the eigenvalues are
nonnegative.
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Example: (Two day stock price – part 3)

We continue the example above. Let us find the covariance matrix and the correlation of X1 and X2.
First find the covariance of X1 and X2. Find the expectation of the product,

E(X1X2) = E((1 + U1)(1/2 + U1 + U2))

= E{(3/2 + [U1 − 1/2])(3/2 + [U1 − 1/2] + [U2 − 1/2])}
= (3/2)2 + (3/2)E([U1 − 1/2] + [U2 − 1/2]) + (3/2)E([U1 − 1/2])+

+ E((U1 − 1/2)2) + E(U1 − 1/2)(U2 − 1/2)

= (3/2)2 + (1/12) + 0 = (3/2)2 + (1/12)

But E(X1)E(X2) = (3/2)2 so

cov(X1, X2) = E(X1X2)− E(X1)E(X2) = 1/12

5.1 Gaussians

One dimensional Gaussians X ∼ N(µ, σ2) have the PDF

fX(y) =
1

σ
√

2π
e−

(x−µ)2

2σ2

Recall Gaussians are stable, that is for Xi ∼ N(µi, σ
2
i ) we have X1 +X2 ∼ N(µ1 + µ2, σ

2
1 + σ2

2).
For any covariance matrix Σ (that is a positive definite real symmetric matrix) in Rn×n (real n×n

matrices) and vector µ ∈ Rn we can define a Multivariate Gaussian distribution X with PDF

fX(x) =
1√

(2π)n det(Σ)
e−

1
2

(x−µ)TΣ−1(x−µ) (5.1)

Notice if Σ = ODOT for D diagonal D = diag(λ1, .., λn) then Σ−1 = OD−1OT and D =
diag(λ−1

1 , .., λ−1
n ).

5.2 Correlation

The covariance of two random variables may be positive or negative. Random variables which have
positive covariance have the property that as one increases then on average the second increases.

On the other hand if the covariance is negative then as one increases on average the second de-
creases.

It is useful to normalize the covariance to a number ρ between −1 and 1. Where |ρ| = 1 indicates
‘perfect’ correlation between the two random variables. Let

ρ = ρXY = corr(X, Y ) =
cov(X, Y )

σXσY

Example: (positive correlation)

In the definition of multidimensional Gaussian, let n = 2, µ = (0, 0)T and Σ =

(
1 1/2

1/2 2

)
. Then

13



ρX,Y = 1/2√
2
.

Example: (negative correlation)

In the definition of multidimensional Gaussian, let n = 2, µ = (0, 0)T and Σ =

(
2 −1/2
−1/2 3

)
. Then

ρX,Y = −1/2√
2
√

3
.

If X an Y are independent random variables then ρXY = 0, but the converse does not hold
Example: (Zero correlation - independent)

Let a < b and c < d. Let X ∼ U [a, b] and Y ∼ U [c, d], then ρ(X,Y ) = 0.

Example: (Zero correlation - not independent)

Let Z = (X, Y ) be uniformly distributed on the shape A = {(x, y) ∈ R2 : |x+ y| ≤ 1}.
Then ρXY = 0.

6 Conditionals

Given a probability experiment, one often would like to condition on some partial knowledge of the
outcome.

Example: (Die roll)

Suppose we roll two die, one red and one green. The sample space is the set of ordered pairs S =
{(i, j) : i, j ∈ {1, .., 6}}. Consider the probability that one of the faces shows a 1.

P(At least one dice shows 1) = 1− P(Neither dice shows a 1) = 1− (5/6)2 = 11/36

But if we have partial knowledge of the outcome the probability may change, suppose we know the
sum is 4.

P(At least one dice shows 1|The sum of the die is 4) = 2/3

This can be seen by deduction, by considering the three possible outcomes where the sum of the roll
is 4: {(1, 3), (2, 2), (3, 1)}, two of three of these have a face with 1 showing.

6.1 Conditional probabilities

We will define the conditional probabilities, recall Bayes rule: let A,B ⊂ S

P(A|B) =
P(A ∩B)

P(B)
(6.1)

this gives the probability of event A given event B.
Example: (Die roll 2)

Suppose we roll two die, one red and one green. The sample space is the set of ordered pairs Ω =
{(i, j) : i, j ∈ {1, .., 6}}. Let X(i, j) = i+ j the sum of the faces of the die. Suppose we know that the
sum is greater than 7, ie X > 7. What is the probability X is greater than or equal to 10?

14



Let A = {X ≥ 10} and B = {X > 7}.

P(A ∩B) = P(A) = 6/36.

on the other hand P(B) = 15/36 so

P(A|B) =
6/36

15/36
=

2

5

Of course, we notice 2
5
6= 6

36
= P(X ≥ 10)

Example: (Die roll 3)

Let us continue the previous example. Let C be the event that the green dice is even. Find

P(A|C)

Notice the elements of A ∩C have the green dice is either 4 or 6. If the green dice is 4 the red dice is
6. If the green dice is 6 the red dice is 4,5, or 6.

P(A ∩ C) = 4/36 = 1/9

Of course P(C) = 1/2. So

P(A|C) =
1/9

1/2
=

2

9

Finally let us return to the stock price example.
Example: (Two day stock price – part 4)

We continue the example above Suppose the event B is that the value of the stock on the second day
is 5/3 ie B = {S2 = 5/3}. Notice P(B) = 0 can we condition on it?!

That is, let A be the event that X1 < 3/2. Show

P(A|B) = 2/5

Of course, if we think in terms of our usual notions from calculus, we can define probabilities which
are positive and then take limits.

That is let Bε = {|X2 − 5/3| < ε}, and define for an event A, P(A|B) = limε→0 P(A|Bε).

6.2 Conditional Random Variable

We condition the random variable Y on X with joint PDF fX,Y with the function,

fY (y|X = x) =
fX,Y (x, y)

fX(x)
(6.2)

where fX is the marginal of X defined in Section 3.1.
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In the discrete setting the conditional distribution is

PY (y|X = x) =
PX,Y (x, y)

PX(x)

where PX is again the marginal of X.
Example: (Two day stock price – part 5)

Again let B be the value of the stock on the second day is 5/3 ie B = {S2 = 5/3}.
If we condition on event B, what is the conditional density of S1, ie find fS1(s|S2 = 5/3) from formula
(6.2).

fS1(s|S2 = 5/3) =
χs∈(7/6,2)

5/2− 5/3
=

1

5/6
χs∈(7/6,2)

6.3 Conditional expectation

As the name indicates this is expectation conditioned on some function on the probability space.
Formally, for jointly distributed random variables X and Y ,

E(Y |X) =
∑
y

P(Y = y|X).

The intuitive understanding is that E(•|X) ‘integrates out’ all randomness independent of X. Notice,
what remains is a function of X. Moreover,

E(Y ) = EX [E(Y |X)]

where EX indicates taking expectation with respect to X.
Example: (unfair coin flips)

Suppose 3 unfair coins are flipped. Let Ω be the set of outcomes. Let

Xi =

{
1 ith flip is head
0 ith flip is tail

.

The total number of heads is H,
H = X1 +X2 +X3.

Find E(H|X1) and E(X1|H).

First we find, E(H|X1). We will calculate in 2 ways, first let us use the formula

E(H|X1) = 0P(H = 0|X1) + 1P(H = 1|X1) + 2P(H = 2|X1) + 3P(H = 3|X1)

consider fixing X1,

P(H = 0|X1 = 0) = q2; P(H = 1|X1 = 0) = 2pq; P(H = 2|X1 = 0) = p2; P(H = 3|X1 = 0) = 0

and

P(H = 0|X1 = 1) = 0; P(H = 1|X1 = 1) = q2; P(H = 2|X1 = 1) = 2pq; P(H = 3|X1 = 1) = p2

16



Thus
E(H|X1 = 0) = 2pq + 2p2 = 2p

and
E(H|X1 = 1) = 1 · q2 + 2 · 2pq + 3 · p2 = 1 + 2pq + 2p2 = 1 + 2p

consider making this a function of X1

E(H|X1) = X1 + 2p

notice this is a function of X1 only - everything else has been integrated.
Let us calculate in a second way remember that for any expectation of any random variables X, Y ,

we have E(X + Y ) = E(X) + E(Y ). Apply this to H..

E(H|X1) = E(X1 +X2 +X3|X1)

= E(X1|X1) + E(X2 +X3|X1)

But E(X1|X1) = X1 and X2, X3 are independent of X1 so they may be integrated as normal.

E(H|X1) = E(X1|X1) + E(X2 +X3|X1) = X1 + 2p

Now let us find E(X1|H). First let us calculate for fixed H, of course,

E(X1|H = 0) = P(X1 = 1|H = 0) = 0

For H = 1 consider that each coin has equal probability of being heads,

E(X1|H = 1) = P(X1 = 1|H = 1) = 1/3

For H = 2 we have exactly the symmetric case that each coin has equal probability of being tails,

E(X1|H = 2) = P(X1 = 1|H = 2) = 2/3

Finally, it is clearly true that,

E(X1|H = 3) = P(X1 = 1|H = 3) = 1

Thus, we have
E(X1|H) = H/3.

The first part of the example illustrates, if X and Y are any random variables and f(X) is a
function of the random variable X and g(X, Y ) is a function of both random variables, that

E(f(X) + g(X, Y )|X) = f(X) + E(g(X, Y )|X).

Similarly:
E(f(X)g(X, Y )|X) = f(X)E(g(X, Y )|X)

Moreover, if Y is independent of X, and g(Y ) is only a function of Y , then E(g(Y )|X) = E(g(Y ))
which is a number - no longer a function.

The above can be generalized to the case conditioning on several random variables.
Example: (biased coin flips)
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Again suppose P(Xi = 1) = p, and P(Xi = 0) = 1− p = q for i = 1, ..., n. For m = 1, .., n, let us write
Hm = X1 + · · ·+Xm so for m < n we have

E(Hm|Hn) =
m

n
Hn

on the other hand,

E(Hn|Hm) = Hm + E(Xm+1 + · · ·+Xn) = Hn + p(n−m).

In the above example we can let Fi contain ‘all the information obtained from the first i coins.’
This is just notation, so we will write,

E(Hn|Fm) ≡ E(Hn|X1, · · · , Xm).

Example: (Sum of i.i.d.)

Let Xi for i = 1, 2, . . . be independent and identically distributed (iid) random variables. That is,
for given random variable X for all i suppose Xi has the same probability distribution as X, written
Xi ∼ X. Let E(X) = µ and V ar(X) = σ2.

For m = 1, .., n, let Sm = X1 + · · ·+Xm. For m < n, calculate E[S2
n|Fm] the expected value of S2

n

given the first m flips.
We can write, S2

n = ((Sn − Sm) + Sm)2, so let us write Y = Sn − Sm. Then we have

E[S2
n|Fm] = E[(Y + Sm)2|Fm]

= E[Y 2 + 2Y Sm + S2
m|Fm]

= E[Y 2] + 2SmE[Y ] + S2
m

where we used E(Y Sm|Fm) = SmE(Y ) as Y is independent of Fm and Sm is a function of Fm.
Now E(Y ) = E(Xm+1) + · · ·+ E(Xn) = (n−m)µ. On the other hand, var(Y ) = E(Y 2)− [E(Y )]2,

but var(Y ) = σ2(n−m), so that E(Y 2) = µ2(n−m)2 + σ2(n−m).
Finally we have

E[S2
n|Fm] = µ2(n−m)2 + σ2(n−m) + 2Smµ(n−m) + S2

m

7 Asymptotic behavior

Let (Ti)i≥1 be i.i.d. random variables, with distribution F (x) = P(Ti ≤ x). We assume for all
i = 0, 1, 2, ... that E(|Ti|) <∞ and define µ := E(T1).

Law of large numbers (LLN) The law of large numbers states, for Ti that with probability 1 the
average converges to the mean i.e.

lim
N→∞

N∑
i=1

Ti
N
→ µ.
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Notice the statement ‘with probability 1’, there are conceivable other sequences not averaging to the
mean but they total zero in probability - like flipping infinite heads in a row. An easier to understand,
but weaker, statement is

P
(∣∣∣∣T1 + · · ·TN

N
− µ

∣∣∣∣ > ε

)
→ 0 as N →∞.

The moral is T1 + · · ·+ TN ≈ µN , if we set t = µN then N = t/µ so that

T1 + · · ·+ Tt/µ ≈ t

Central Limit Theorem (CLT) We assume Var (T1) = σ2. The central limit theorem states, for
N(0, 1) a normal variable with mean 0 and variance 1,

T1 + · · ·+ TN −Nµ
σ
√
N

→ N(0, 1)

by this we mean that

P
(
T1 + · · ·+ TN −Nµ

σ
√
N

≤ x

)
→ Φ(x).

Where Φ is the cumulative distribution of a N(0, 1),

Φ(x) =

∫ x

−∞
e−x

2/2 dx√
2π
.

We write down the sum, (here Z ∼ N(0, 1)),

T1 + · · ·+ TN = SN ≈ Nµ+ Zσ
√
N

Central Limit Theorem - for multivariate random variables (CLT) Suppose Xi are iid
Random variables in Rd we may write

Xi =

 Xi(1)
...

Xi(d)

 .

Suppose E(Xi) = µ ∈ Rd and Σ ∈ Rd×d is the covariance matrix Σj,k = cov(Xi(j), Xi(k)).
Let us suppose that detΣ 6= 0 (this is equivalent to saying that each Xi(j) has some randomness

not contained in the other Xi(k) - that is one of the Xi(j) is not a function of the other Xi(j).)
Then a sum of the Xi properly normalized approaches a Gaussian random variable. Let Sn =

X1 + · · ·+Xn That is for A ∈ Rd we have

lim
n→∞

P
(
Sn − nµ√

n
∈ A

)
=

∫
· · ·
∫
x∈A

e−(x−µ)TΣ−1(x−µ) dx1 · · · dxd√
(2π)d det Σ

.

As a short hand we write 1√
n
(Sn − nµ)

D−→ Z where Z ∼ N(0,Σ).

8 ODE review

We will review first and second order linear ODEs.
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8.1 First Order

Let f : [0,∞)→ R. The notation f : U → V means f is a map from the set U to the set V .
Consider the ODE,

d

dt
y(t) = f(t)y(t) (8.1)

with y(0) = yo.
Let F : [0,∞) → R be the antiderivative of f , that is d

dt
F (t) = f(t) and set F (0) = 0. Let

y(t) = yoe
F (t), then y(t) solves (8.1).

EG Let y′ = 1.01y and yo = 100. The solution is

y(t) = 100e1.01t

EG Let y′ = 10ty and yo = 10. The solution is

y(t) = 10e5t2

8.2 Second Order

Let us consider

a
d2

dt2
y(t) + b

d

dt
y(t) + cy(t) = 0 (8.2)

with y(0) = yo and y′(0) = y1.
To solve this equation we need to first find the roots of the characteristic polynomial,

ax2 + bx+ c = 0.

Suppose the roots are r1, r2.
If r1 6= r2 then the solution of (8.2) is

y(t) = A1e
r1t + A2e

r2t

where

(
A1

A2

)
=

(
1 1
r1 r2

)−1(
yo
y1

)
= 1

r2−r1

(
r2 −1
−r1 1

)(
yo
y1

)
.

Recall the inverse of a 2x2 matrix,(
a b
c d

)−1

=
1

ad− bc

(
d −b
−c a

)
If r = r1 = r2 then the solution of (8.2) is

y(t) = A1e
rt + A2te

rt

where A1 = yo and A2 = y1 − ryo.

EG Let y′′ = −4y and yo = 1, y1 = 0. The characteristic polynomial x2 + 4 = 0 has roots r1 = 2i
and r2 = −2i. The solution is:

y(t) =
1

2
ei2t +

1

2
e−i2t = cos(2t)

We used the Euler formula eix = cos(x) + i sin(x)
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