Homework 8

1. Let $u(t, x)=t^{n} x^{m}$. Let Z_{t} be the stochastic process $Z_{t}=u\left(t, W_{t}\right)$. Find $d Z_{t}$.
2. Let $u(t, x)=t^{2} \sin (x)$. Let Z_{t} be the stochastic process $Z_{t}=u\left(t, W_{t}\right)$. Find $d Z_{t}$.
3. We wish to calculate $\int_{0}^{t} W_{s} d W_{s} \ldots$ it is not exactly clear how to do this. Consider $u(t, x)=\frac{1}{2}\left(x^{2}-t\right)$ and $u\left(t, W_{t}\right)$ take the differential ' d ' to find the value of the integral.
4. Let $a(s)$ and $b(s)$ be 'nice' let $Z_{t}=e^{\int_{0}^{t} a(s) d s+\int_{0}^{t} b(s) d W_{s}}$, find $d Z_{t}$.

First show for $Y_{t}=e^{-\int_{0}^{t} \frac{1}{2} b_{s}^{2} d s+\int_{0}^{t} b_{s} d W_{s}} \ldots$ Ito's formula implies:

$$
d Y_{t}=b_{t} Y_{t} d W_{t}
$$

5. Product rule: Suppose Z_{t}^{i} for $i=1,2$ has differential $d Z_{t}^{i}=X^{i} d t+Y^{i} d W_{t}$.

Let's derive $d\left(Z_{t}^{1} Z_{t}^{2}\right)$.
First derive the product rule from calculus: let $\Delta f(t)=f(t+\delta)-f(t)$.
Derive:

$$
\Delta(f(t) g(t))=g(t) \Delta f(t)+f(t) \Delta g(t)+\Delta f(t) \Delta g(t)
$$

argue that $\Delta f(t) \sim f^{\prime}(t) \delta$ so the last term vanishes, the product rule $(f g)^{\prime}=f^{\prime} g+g^{\prime} f$. As the same difference equation holds for the stochastic functions

$$
\Delta\left(Z_{t}^{1} Z_{t}^{2}\right)=Z_{t}^{1} \Delta Z_{t}^{2}+Z_{t}^{2} \Delta Z_{t}^{1}+\Delta Z_{t}^{1} \Delta Z_{t}^{2}
$$

the last term now is of the form

$$
\Delta Z_{t}^{1} \Delta Z_{t}^{2}=\left(X_{t}^{1} \delta+Y_{t}^{1} \delta^{1 / 2}\right)\left(X_{t}^{2} \delta+Y_{t}^{2} \delta^{1 / 2}\right)
$$

thus the product rule includes a $Y_{t}^{1} Y_{t}^{2} d t$ term.
6. In this example, we find the solution of the general linear equation,

$$
d X_{t}=\left(p_{t} X_{t}+g_{t}\right) d t+\left(q_{t} X_{t}+f_{t}\right) d W_{t}
$$

let us define the multiplier

$$
\mu=e^{-\int_{0}^{t}\left(p_{s}-\frac{1}{2} q_{s}^{2}\right) d s-\int_{0}^{t} q_{s} d W_{s}}
$$

Calculate $d(\mu X) \ldots$ As $d \mu$ has a fluctuation term $d W_{t}$ - don't forget to use the proper Ito product rule. Note the terms with X_{t} cancel. Thus we may write

$$
\mu_{t} X_{t}=\mu_{0} X_{0}+\int_{0}^{t} d\left(\mu_{t} X_{t}\right)
$$

and simplify for X_{t}.

