Homework 3

1.) Refer to the notes. For a contract costing $\$ 100$ at time 0 and paying $\$ 120$ at $t=1$ (at the end of one year). That is $V(0)=100$ and $V(1)=120$. We show that if someone values $V(1 / 2)$ at $\$$ 110 , we may obtain a risk free profit. Show that if someone values $V(1 / 2)$ at $\$ 109$ we may also obtain a risk-free profit.
2.) Let $V(t)$ be the value of a coupon bond at time t which pays $\$ 100$ quarterly (4 times per year) at an effective interest of 10% (notice effective interest is per year but payments are quarterly)
a) Suppose the bond matures in 1 year at which time it pays a face value (along with the final coupon) of $\$ 5000$, is it above below or at par?
b) Suppose the bond matures in 2 years at which time it pays a face value (along with the final coupon) of $\$ 4000$, is it above below or at par?
c) Plot $V(t)$ for both schemes from a) and b).
3.) Let S_{1} and S_{2} be two stocks, both valued at 100 at time 0 , and let $S_{1}(1)=100+X$ and $S_{2}(1)=100+Y$. Where (X, Y) are jointly distributed random variables with density,

$$
f_{X, Y}(x, y)=\left\{\begin{array}{cc}
c(x-2 y)^{2} & : 0 \leq x \leq 20 ; 0 \leq y \leq 10 \\
0 & : \text { otherwise }
\end{array}\right.
$$

for c a properly chosen normalization constant.
a) find c
b) find the variables K_{1}, K_{2} - that is, find the joint distribution of the return.
c) Find the return expectation
d) Find the covariance matrix
e) Find the minimal variance profile. Does it require short selling?

