Math finance review Exam 2

1.) Forwards - assume a risk free interest rate of 4%
a.) Suppose today's value of a security is $\$ 70$. You write a contract to sell the security at the end of a year, how much do you write the security for?(forward price)
b.) Suppose, in addition, the security pays dividends of $\$ 1$ monthly - starting in 1 month and you sell the security after the final (12th) dividend. How is the forward price modified?
c.) Suppose after 6 months (after 6th dividend), the value of the stock is $\$ 80$. You decide to clear the contract. How much do you pay the holder?
2.) Currency exchange. Suppose USD has an interest rate of 2% and the Mexican Peso has an interest rate of 5%, assume the exchange rate is $\$ 1$ USD $=\$ 20 \mathrm{MXN}$
a.) Suppose you wish to aquire $\$ 1000$ MXN peso in 9 months time. What should you agree to pay for it?
b.) Suppose at 3 months the exchange rate has moved to $\$ 1$ USD $=\$ 19$ MXN what is the value of the contract at that time?
3.) Binomial model - Let a stock have initial value $S_{0}=90$. Assume at each month the return of the stock is $m_{u}=2 \%$ or $m_{d}=-1 \%$. Assume the effective yearly interest rate is $\% 4$.
a. Find the (time 0) value of a European call with expiry time at 6 months with strike price $X=91$. What is the replicating portfolio at each step?
b. Find the (time 0) value of a European put with expiry time at 6 months with strike price $X=91$.
c. Find the (time 0) value of the Asian Call with expiry 6 months and fixed strike $X=91$.
d. Find the (time 0) value of the American Put with expiry in 3 months and strike $X=89$.

4 Suppose a stock has time 0 value $=90$ and implied volatility $\sigma=5 \%$ (per year). If the effective yearly interest rate is 1% find the value of the European Call with strike price $X=90$ and expiry 9 months using [a] Black Scholes and [b] the Binomial model for $N=52$ and 365 steps per year. Compare the answers (Use the Gaussian to approximate the value from the binomial model.)
5.) Let W_{t} be Brownian motion.
a. Find $d\left(\sin (t) \cos \left(W_{t}\right)\right)$.
b. Find

$$
d\left(\left[t \int_{0}^{t} W_{t} d t\right]^{2}\right)
$$

c. Find

$$
d\left(\cos \left(W_{t}\right)\left[t \int_{0}^{t} W_{t} d t\right]^{2}\right)
$$

