Stochastic Integration Introduction

Abstract

Stochastic integration summary.

\section*{1 Integration by Taylor theorem and Reimann sums}

Review Taylor's theorem in calculus (non-stochastic case). Let f be defined on $\mathbb{R} \times \mathbb{T}$ with time set $\mathbb{T}=[0, T]$. We create a discrete Riemann sum, for function $t \rightarrow x(t)$ for $t \in \mathbb{T}$ then

$$
f(T, x(T))=f(0, x(0))+\sum_{k=1}^{N} f\left(t_{k}, x\left(t_{k}\right)\right)-f\left(t_{k-1}, x\left(t_{k-1}\right)\right)
$$

where we take (for example) $\Delta t=\frac{1}{N}$ and $t_{k}=k / N$. We also write $x_{k}=x\left(t_{k}\right)$. Let f have one derivative in space and one derivative in time, then

$$
\begin{aligned}
f\left(t_{k}, x\left(t_{k}\right)\right)-f\left(t_{k-1}, x\left(t_{k-1}\right)\right)= & f_{t}\left(t_{k-1}, x_{k-1}\right)\left(t_{k}-t_{k-1}\right)+f_{x}\left(t_{k-1}, x_{k-1}\right)\left(x_{k}-x_{k-1}\right) \\
& +o\left(t_{k}-t_{k-1}\right)+o\left(x_{k}-x_{k-1}\right)
\end{aligned}
$$

Approximation Here the notation o indicates a term vanishing with respect to the argument, for example $y_{\epsilon}=o(\epsilon)$ if say $\left|y_{\epsilon}\right|<C \epsilon^{\alpha}$ for some $\alpha>1$ and $C<\infty$. Moreover, $x_{k}-x_{k-1}=x_{k-1}^{\prime}\left(t_{k}-\right.$ $\left.t_{k-1}\right)+o\left(t_{k}-t_{k-1}\right)$. The important point is $\sum_{k}\left(t_{k}-t_{k-1}\right)^{\alpha} \rightarrow 0$, as $N \rightarrow 0$.

From this we have that

$$
\begin{align*}
f(T, x(T)) & =f(0, x(0))+\sum_{k=1}^{N T} f_{t}\left(t_{k-1}, x_{k-1}\right)\left(t_{k}-t_{k-1}\right)+f_{x}\left(t_{k-1}, x_{k-1}\right)\left(x_{k}-x_{k-1}\right) \tag{1.1}\\
& =f(0, x(0))+\int_{0}^{T}\left[f_{t}(s, x(s))+f_{x}(s, x(s)) x^{\prime}(s)\right] \mathbf{d} s
\end{align*}
$$

2 Stochastic integration by similar approach of Taylor's theorem and Riemann sums

We attempt to reproduce this calculation for functions $f\left(t, W_{t}\right)$ for Wiener process W_{t}.
In the deterministic case, fluctuations of $x(t)$ are proportional to x^{\prime} in time Δt. However, we know that brownian motion W_{t} fluctuations are of order $\sqrt{\Delta t}$ in a time step Δt. Therefore, if we consider only one spatial derivative we come across the following issue

$$
\begin{aligned}
u\left(t+\Delta t, W_{t+\Delta t}\right)= & u\left(t, W_{t}\right)+\dot{u}\left(t, W_{t}\right)[\Delta t]+u^{\prime}\left(t, W_{t}\right)\left[W_{t+\Delta t}-W_{t}\right] \\
& +o(\Delta t)+o\left(W_{t+\Delta t}-W_{t}\right)
\end{aligned}
$$

the second term of little o remainders cannot be counted upon to sum up to something finite.

Ito's formula for functions of Brownian processes We therefore take 2 derivatives, and using Taylor's theorem we have

$$
\begin{align*}
u\left(t+\Delta t, W_{t+\Delta t}\right)= & u\left(t, W_{t}\right)+\dot{u}\left(t, W_{t}\right)[\Delta t]+u^{\prime}\left(t, W_{t}\right)\left[W_{t+\Delta t}-W_{t}\right] \tag{2.1}\\
& +\frac{1}{2} u^{\prime \prime}\left(t, W_{t}\right)\left[W_{t+\Delta t}-W_{t}\right]^{2}+o(\Delta t)+o\left(\left[W_{t+\Delta t}-W_{t}\right]^{2}\right)
\end{align*}
$$

putting these terms into a summation like (1.1) we have,

$$
\begin{align*}
u\left(T, W_{T}\right)= & u\left(0, W_{0}\right)+\sum_{i=0}^{N T-1} \dot{u}\left(t_{i}, W_{t_{i}}\right)\left[t_{i+1}-t_{i}\right] \tag{2.2}\\
& +\sum_{i=0}^{N T-1} u^{\prime}\left(t_{i}, W_{t_{i}}\right)\left[W_{t_{i+1}}-W_{t_{i}}\right]+\sum_{i=0}^{N T-1} \frac{1}{2} u^{\prime \prime}\left(t_{i}, W_{t_{0}}\right)\left[W_{t_{i+1}}-W_{t_{i}}\right]^{2}
\end{align*}
$$

we have dropped the little o terms for convenience. It is reasonable to expect that $\left[W_{t_{i+1}}-W_{t_{i}}\right]^{2} \sim$ $\left(t_{i+1}-t_{i}\right)$ as $t_{i+1}-t_{i} \rightarrow 0$ by the $1 / 2$-space time scaling. This is in fact true, although it is not a trivial point to show, but we will assume it here for convenience. Therefore, we have Ito's formula,

$$
\begin{equation*}
u\left(T, W_{T}\right)=u\left(0, W_{0}\right)+\int_{0}^{T} \dot{u}\left(t, W_{t}\right) \mathbf{d} t+\frac{1}{2} \int_{0}^{T} u^{\prime \prime}\left(t, W_{t}\right) \mathbf{d} t+\int_{0}^{T} u^{\prime}\left(t, W_{t}\right) \mathbf{d} W_{t} \tag{2.3}
\end{equation*}
$$

this formula is equivalent to the differential form

$$
\begin{equation*}
\mathbf{d} u\left(t, W_{t}\right)=\left[\dot{u}\left(t, W_{t}\right)+\frac{1}{2} u^{\prime \prime}\left(t, W_{t}\right)\right] \mathbf{d} t+u^{\prime}\left(t, W_{t}\right) \mathbf{d} W_{t} \tag{2.4}
\end{equation*}
$$

Ito's formula for functions of Stochastic processes measurable with respect to Brownian motion Now that we understand the equation

$$
\begin{equation*}
\mathbf{d} Z_{t}=X_{t} \mathbf{d} t+Y_{t} \mathbf{d} W_{t} \tag{2.5}
\end{equation*}
$$

we can reproduce (2.3), replacing $W_{t} \rightarrow Z_{t}$. To see how this plays out, return to (2.1)

$$
\begin{align*}
u\left(t+\Delta t, Z_{t+\Delta t}\right)= & u\left(t, Z_{t}\right)+\dot{u}\left(t, Z_{t}\right)[\Delta t]+u^{\prime}\left(t, Z_{t}\right)\left[Z_{t+\Delta t}-Z_{t}\right] \tag{2.6}\\
& +\frac{1}{2} u^{\prime \prime}\left(t, Z_{t}\right)\left[Z_{t+\Delta t}-Z_{t}\right]^{2}+o(\Delta t)+o\left(\left[Z_{t+\Delta t}-Z_{t}\right]^{2}\right)
\end{align*}
$$

the differences in (2.6) are a discrete version of (2.5) i.e.

$$
\left[Z_{t+\Delta t}-Z_{t}\right] \sim X_{t}[\Delta t]+Y_{t}\left[W_{t+\Delta t}-W_{t}\right]
$$

and

$$
\left[Z_{t+\Delta t}-Z_{t}\right]^{2} \sim X_{t}^{2}[\Delta t]^{2}+2 X_{t} Y_{t}\left[(\Delta t)\left(W_{t+\Delta t}-W_{t}\right)\right]+Y_{t}^{2}\left[W_{t+\Delta t}-W_{t}\right]^{2}
$$

as before, $\left[W_{t+\Delta t}-W_{t}\right]^{2} \sim \Delta t$ but the other terms vanish. Therefore, carrying out (2.2) we have the following version of Ito's formula,

$$
\begin{equation*}
u\left(T, Z_{T}\right)=u\left(0, Z_{0}\right)+\int_{0}^{T} \dot{u}\left(t, Z_{t}\right) \mathbf{d} t+\frac{1}{2} \int_{0}^{T} u^{\prime \prime}\left(t, Z_{t}\right) Y_{t}^{2} \mathbf{d} t+\int_{0}^{T} u^{\prime}\left(t, Z_{t}\right) \mathbf{d} Z_{t} \tag{2.7}
\end{equation*}
$$

which is equivalent to the differential form

$$
\begin{equation*}
\mathbf{d} u\left(t, Z_{t}\right)=\left[\dot{u}\left(t, Z_{t}\right)+\frac{1}{2} u^{\prime \prime}\left(t, Z_{t}\right) Y_{t}^{2}\right] \mathbf{d} t+u^{\prime}\left(t, Z_{t}\right) \mathbf{d} Z_{t} \tag{2.8}
\end{equation*}
$$

In both (2.7) and (2.8) the term $\mathbf{d} Z_{t}$ can be replaced by (2.5).

3 Product rule

To derive product rule, let's remind ourselves again about the product rule in the deterministic case.

$$
\Delta[f(t) g(t)]=f(t+\Delta t) g(t+\Delta t)-f(t) g(t)
$$

Adding zero to this equarion gives us,

$$
\begin{align*}
\Delta[f(t) g(t)]= & f(t+\Delta t) g(t+\Delta t)-f(t+\Delta t) g(t)+f(t+\Delta t) g(t)-f(t) g(t) \tag{3.1}\\
= & {[f(t+\Delta t) g(t+\Delta t)-f(t) g(t+\Delta t)-f(t+\Delta t) g(t)+f(t) g(t)] } \\
& +[f(t+\Delta t) g(t)-f(t) g(t)]+[f(t) g(t+\Delta)-f(t) g(t)] \\
= & {[f(t+\Delta t)-f(t)] \cdot[g(t+\Delta t)-g(t)] } \\
& +[f(t+\Delta t)-f(t)] g(t)+[g(t+\Delta)-g(t)] f(t)
\end{align*}
$$

This obtains for small Δt,

$$
\Delta[f(t) g(t)]=\left[f^{\prime}(t) g^{\prime}(t)\right](\Delta t)^{2}+\left[f^{\prime}(t) g(t)+f(t) g^{\prime}(t)\right](\Delta t)
$$

Thus the $[\Delta t]^{2}$ term vanishes in the ratio

$$
[f(t) g(t)]^{\prime}=\frac{\Delta[f(t) g(t)]}{[\Delta t]}=f^{\prime}(t) g(t)+f(t) g^{\prime}(t)
$$

Of course this is easily extended to $f_{1}(t, x(t))=f(t)$.
Now do the same for stochastic processes for $i=1,2$,

$$
\mathrm{d} Z_{t}^{(i)}=X_{t}^{(i)} \mathbf{d} t+Y_{t}^{(i)} \mathbf{d} W_{t}
$$

Reverting again to the discrete version,

$$
\begin{align*}
\Delta\left[Z_{t}^{(1)} Z_{t}^{(2)}\right]= & {\left[Z_{t+\Delta t}^{(1)}-Z_{t}^{(1)}\right] \cdot\left[Z_{t+\Delta t}^{(2)}-Z_{t}^{(2)}\right] } \tag{3.2}\\
& +\left[Z_{t+\Delta t}^{(1)}-Z_{t}^{(1)}\right] Z_{t}^{(2)}+\left[Z_{t+\Delta t}^{(2)}-Z_{t+\Delta t}^{(2)}\right] Z_{t}^{(1)}
\end{align*}
$$

Again we determine which are the higher order terms which vanish, the differences on the second line in (3.2) become our \mathbf{d} terms and on the first line,

$$
\begin{aligned}
{\left[Z_{t+\Delta t}^{(1)}-Z_{t}^{(1)}\right] \cdot\left[Z_{t+\Delta t}^{(2)}-Z_{t}^{(2)}\right]=} & X_{t}^{(1)} X_{t}^{(2)}[\Delta t]^{2}+\left[X_{t}^{(1)} Y_{t}^{(2)}+Y_{t}^{(2)} X_{t}^{(1)}\right](\Delta t)\left[W_{t+\Delta t}-W_{t}\right] \\
& +Y_{t}^{(1)} Y_{t}^{(2)}\left[W_{t+\Delta t}-W_{t}\right]^{2}
\end{aligned}
$$

and the only term which survives is the final term. There fore the product rule is

$$
\mathbf{d}\left[Z_{t}^{(1)} Z_{t}^{(2)}\right]=Z_{t}^{(1)} \mathbf{d} Z_{t}^{(2)}+Z_{t}^{(2)} \mathbf{d} Z_{t}^{(1)}+Y_{t}^{(1)} Y_{t}^{(2)} \mathbf{d} t
$$

4 Examples

Let's find the derivative of some terms.

4.1 A stock price with log Brownian forcing

Consider $u(t, x)=u_{0} e^{a t+b x}$. The derivatives are

$$
\dot{u}=a u_{0} e^{a t+b x}=a u, u^{\prime}=b u_{0} e^{a t+b x}=b u \text { and } u^{\prime \prime}=b^{2} u_{0} e^{a t+b x}=b^{2} u .
$$

Therefore, for $Z_{t}=u\left(t, W_{t}\right)$, and applying (2.4) on u we have,

$$
\mathbf{d} Z_{t}=\mathbf{d} u\left(t, W_{t}\right)=\left(a+\frac{1}{2} b^{2}\right) u \mathbf{d} t+b u \mathbf{d} W_{t}=\left(a+\frac{1}{2} b^{2}\right) Z_{t} \mathbf{d} t+b Z_{t} \mathbf{d} W_{t}
$$

Notice if we set $b=0$ we have a deterministic process increasing exponentially at rate a. On the other hand setting $a=0$ gives Brownian forcing proportional to the value of the process. This forms the stochastic model of a stock with forcing independent on disjoint intervals.

Thus, if we expect the value of the stock to drift at a rate of μ at a given time in proportion to its current value and fluctuate at intensity σ relative to its current value the stochastic differential equation of the stock is

$$
\mathbf{d} S_{t}=\mu S_{t} \mathbf{d} t+\sigma S_{t} \mathbf{d} W_{t}
$$

which has solution

$$
S_{t}=S_{0} e^{\left(\mu-\frac{1}{2} \sigma^{2}\right) t+\sigma W_{t}} .
$$

This corresponds to the process we derived for scaling the N step binomial model

$$
\log \frac{S_{t}}{S_{0}}=\left(\mu-\frac{1}{2} \sigma^{2}\right) t+\sigma W_{t}
$$

Stock with continuous dividends Suppose the stock pays $\delta \frac{1}{N} S(t)$ on each time step. Then in the continuous model we have

$$
d S_{t}=(r-\delta) S_{t} d t+\sigma S_{t} d W_{t}
$$

So that

$$
S_{t}=S(0) e^{\left(r-\delta-\frac{1}{2} \sigma^{2}\right) t+\sigma W_{t}}
$$

5 Portfolios

At time t, holding is $x(t), y(t)$ portfolio has value,

$$
V(t, S(t))=x(t) S(t)+y(t) A(t)
$$

For $S(t)$ value of stock and $A(t)=e^{r t}$ the value of the bond.

$$
d S(t)=r S(t) d t+\sigma S(t) d W(t), \quad d A(t)=r e^{r t} d t
$$

European option/replicating portfolio Let V replicate a European option.
Recall in discrete version: $S^{ \pm}(t)=S(t)\left(1+r \frac{1}{N} \pm \sigma \frac{1}{\sqrt{N}}\right)$

$$
x(t)=\frac{V\left(t+1 / N, S^{+}(t)\right)-V\left(t+1 / N, S^{-}(t)\right)}{S^{+}(t)-S^{-}(t)}
$$

that is $x(t)$ is derivative of V with respect to S value,

$$
x(t)=V^{\prime}(t, S(t)) .
$$

On the other hand, in the discrete version,

$$
y(t)=\frac{S^{+}(t) V\left(S^{-}(t)\right)-S^{-}(t) V\left(S^{+}(t)\right)}{A(t+1 / N)\left(S^{+}(t)-S^{-}(t)\right)}
$$

then 'adding zero'

$$
y(t)=\frac{S^{+}(t) V\left(S^{-}(t)\right)-S^{+}(t) V\left(S^{+}(t)\right)+S^{+}(t) V\left(S^{+}(t)\right)-S^{-}(t) V\left(S^{+}(t)\right)}{A(t+1 / N)\left(S^{+}(t)-S^{-}(t)\right)}
$$

Thus, taking the limit we have

$$
y(t)=\frac{z(t)}{A(t)}=\frac{V(t, S(t))-S(t) V^{\prime}(t, S(t))}{A(t)}
$$

Stochastic formula From Ito formula,

$$
d x(t)=d V^{\prime}(t, S(t))=\left[\dot{V}^{\prime}+\frac{1}{2} \sigma^{2} S^{2}(t) V^{\prime \prime \prime}\right] d t+V^{\prime \prime} d S(t)
$$

or

$$
d x(t)=d V^{\prime}(t, S(t))=\left[\dot{V}^{\prime}+r S(t) V^{\prime \prime}+\frac{1}{2} \sigma^{2} S^{2}(t) V^{\prime \prime \prime}\right] d t+\sigma S(t) V^{\prime \prime} d W(t)
$$

Differential Change in value, use Ito formula,

$$
d V(t)=x(t) d S(t)+S(t) d x(t)+\sigma^{2} S^{2}(t) V^{\prime \prime} d t+y(t) d A(t)+A(t) d y(t)
$$

Assume self financing:

$$
0=S(t) d x(t)+\sigma^{2} S^{2}(t) V^{\prime \prime} d t+A(t) d y(t)
$$

Then

$$
d V_{t}=x_{t} d S_{t}+y_{t} d A_{t}=r\left(x_{t} S_{t}+y_{t} A_{t}\right) d t+x_{t} \sigma S_{t} d W_{t}=r V_{t} d t+\sigma V_{t}^{\prime} S_{t} d W_{t}
$$

Thus

$$
d\left(e^{-r t} V(t)\right)=\left(-r e^{-r t} V(t)+r e^{-r t} V(t)\right) d t+\sigma e^{-r t} S(t) V^{\prime} d W(t)=\sigma e^{-r t} S(t) V^{\prime} d W(t)
$$

It follows that $\widetilde{V}(t)=e^{-r t} V(t)$ is a martingale so that

$$
\widetilde{V}(0)=\mathbb{E}(\tilde{V}(t))
$$

for any t.

