Stochastic Integration Introduction

Abstract

Stochastic integration summary.

1 Integration by Taylor theorem and Reimann sums

Review Taylor’s theorem in calculus (non-stochastic case). Let f be defined on R x T with time set
T = [0,T]. We create a discrete Riemann sum, for function ¢ — z(¢) for ¢ € T then

F(T,2(T)) = F0,2(00) + Y f (b 2(t)) = f (i, 2(ti))

where we take (for example) At = < and ¢, = k/N. We also write @ = x(tz). Let f have one
derivative in space and one derivative in time, then

fhxtr) — f(teer,2(trar)) = fi (b, oem1) (B — th1) + fo (Beors 1) (20 — T121)
—|—O(tk — tk—l) + o(xk — ZL’k_l)
Approximation Here the notation o indicates a term vanishing with respect to the argument, for

example y. = o(e) if say |y.| < Ce* for some o > 1 and C' < co. Moreover, xp — xp_1 = ) (tx —
tk—1) + o(tx — tk—1). The important point is ), (¢t — tk—1)* — 0, as N — 0.

From this we have that

NT

f(T,2(T)) = f(0,2(0)) + Z fe (v op—1) (G — tr1) + fo (1, 1) (2 — 2-1)  (L1)

k=1

= f(0796(0))+/0 [fi (s,2(5)) + fa (5,2(s)) 2'(s)] ds

2 Stochastic integration by similar approach of Taylor’s the-
orem and Riemann sums

We attempt to reproduce this calculation for functions f(¢, W;) for Wiener process W;.

In the deterministic case, fluctuations of z(t) are proportional to 2’ in time At. However, we know
that brownian motion W, fluctuations are of order /At in a time step At. Therefore, if we consider
only one spatial derivative we come across the following issue

u(t + Ata Wt+At> = U(t, Wt) + u(t7 Wt)[At] + ul(ta Wt)[WtJrAt - Wt]
+0(At) + O(VVt+At - Wt)

the second term of little o remainders cannot be counted upon to sum up to something finite.
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Ito’s formula for functions of Brownian processes We therefore take 2 derivatives, and using
Taylor’s theorem we have

U(t + At, Wt-l—At) = U(t, Wt) + U(t, Wt)[At] + ul(t, Wt)[VVt-i-At — Wt} (21)
+u (8, W) [Wipare — Wil + o(AL) + o([Wiyar — WiJ?)

putting these terms into a summation like (1.1) we have,

NT—-1

1=0
NT—1 NT—1
+ Z ul(tiv Wti)[Wti+l - th] + Z %u”@i? Wto)[mi+l - Wti]2
=0 =0

we have dropped the little o terms for convenience. It is reasonable to expect that [W;, , — W% ~
(tix1 —t;) as t;x1 — t; — 0 by the 1/2-space time scaling. This is in fact true, although it is not a
trivial point to show, but we will assume it here for convenience. Therefore, we have Ito’s formula,

T T T
u(T,Wr) = u(O,WO)+/ u(t,Wt)dt+%/ u”(t,Wt)dt—l—/ o' (t, W) dW, (2.3)
0 0 0

this formula is equivalent to the differential form

du(t, W,) = [u(t,W,) + su"(t, W,)] dt + o'(¢, W) dW, (2.4)

Ito’s formula for functions of Stochastic processes measurable with respect to Brownian
motion Now that we understand the equation

dZ, = Xidt + Y,.dW, (2.5)
we can reproduce (2.3), replacing W; — Z;. To see how this plays out, return to (2.1)

u(t -+ At, Zt+At) = u(t, Zt) + U(t, Zt>[At] + U//(t, Zt)[Zt+At — Zt} (26)
35U (t, Z0) [ Zerar — Zi)* + 0(At) + o[ Zisar — Zi)?)

the differences in (2.6) are a discrete version of (2.5) i.e.
[Zivae — Z4] ~ X |At] 4+ Yi[Wiae — Wi

and
(Zirae — Zi)? ~ XP AP 4+ 2X, Y [(A) (Wigar — W) + YE[Wiar — WP

as before, [Wy,ar — Wi]? ~ At but the other terms vanish. Therefore, carrying out (2.2) we have the
following version of Ito’s formula,

T T T
u(T, Zr) = u(O,ZO)+/ u(t,Zt)dt+§/ u”(t,Zt)deth/ u'(t, Z;)d Z, (2.7)
0 0 0

which is equivalent to the differential form
du(t,Z,) = [u(t, Z)+ $u"(t, Z,)Y7?] dt + (¢, Z,)dZ, (2.8)

In both (2.7) and (2.8) the term dZ; can be replaced by (2.5).
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3 Product rule

To derive product rule, let’s remind ourselves again about the product rule in the deterministic case.

Alf()g(0)] = f(t+ At)g(t + At) — f(t)g(t)

Adding zero to this equarion gives us,

Alft)gt)] = [f(t+ At)g(t+ At) — f(t+ At)g(t) + f(t + At)g(t) — f(t)g(t) (3.1)
= [f{t+At)g(t+ At) — f(t)g(t + At) — f(t + At)g(t) + f(1)g(t)]
HIf(E+ Ag() = f(OgO)] + [f()g(t +A) = f(t)g(1)]
= [fU+A) = f@O)]-[9(t + At) — g(t)]
HIf(E+ AL = f(O)]g(t) +[9(t + A) = g(B)] £(2)

This obtains for small At,

Of course this is easily extended to fi(t,z(t)) = f(t).
Now do the same for stochastic processes for ¢ = 1, 2,

dz" = xPdt + v, dw,
Reverting again to the discrete version,
1) (2 1 1
AZPZP) = |26 - 20 |25 - 20 (3.2)
1 2 1
+ |:Zt(+)At ~ 7 )} z® + [Zwt(+)At Zt(Jr)At} zV

Again we determine which are the higher order terms which vanish, the differences on the second line
n (3.2) become our d terms and on the first line,

1 1 2 2 1) (2 Dy (2 2) 1-(1
Z0n = 2] - (288 - 20 = XX 4 XY VO XA Wi — W]
YOV W a0 - WP
and the only term which survives is the final term. There fore the product rule is

dizVz?) = zVdz? + zPdz + vyt

4 Examples

Let’s find the derivative of some terms.



4.1 A stock price with log Brownian forcing

at+bx

Consider u(t, z) = uge . The derivatives are

U = auge®™ = au, u' = buge™ ™ = bu and v’ = b*upe™ " = bK?u.
Therefore, for Z; = u(t, W;), and applying (2.4) on u we have,
dZ, = du(t,W;) = (a + 1b*)udt + budW, = (a + $b°)Z,dt + bZ,dW,

Notice if we set b = 0 we have a deterministic process increasing exponentially at rate a. On the other
hand setting a = 0 gives Brownian forcing proportional to the value of the process. This forms the
stochastic model of a stock with forcing independent on disjoint intervals.

Thus, if we expect the value of the stock to drift at a rate of p at a given time in proportion to
its current value and fluctuate at intensity o relative to its current value the stochastic differential
equation of the stock is

ds; = puSdt + 0.5, dW;

which has solution
Sy = Soe(ufétﬂ)“gwt.

This corresponds to the process we derived for scaling the N step binomial model

S 1
log S_(t) = (u— 502)t + oW,

Stock with continuous dividends Suppose the stock pays ¢ %S (t) on each time step. Then in the
continuous model we have

dSt = (T — 5>Stdt + UStth

So that
Sy = S(0)elrime oW

5 Portfolios

At time ¢, holding is z(t), y(t) portfolio has value,
V(L 5(8) = 2(6)S(E) + (D A)

For S(t) value of stock and A(t) = €™ the value of the bond.

dS(t) = rS(t)dt + o S(t)dW (t), dA(t) = re™dt

European option/replicating portfolio Let V replicate a European option.
Recall in discrete version: S*(t) = S(t)(1 47y + 0-1-)

3
o _ V(E+1/N,5%(0) = V(t+1/N, 5 (1))
=) = 51— 50

that is x(t) is derivative of V' with respect to S value,
z(t) = V'(t,S(t)).
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On the other hand, in the discrete version,

1 - SOV (W) = S V(S (1)
Y A(t+1/N)(5*(t) — 5 (1))

then ‘adding zero’

STOV(S™(1) = STOV(ST(#) + STOV(ST() = S™(HV(ST(1))
At +1/N)(S*(t) = 5=(1))

L) V(LSW) - SOV S()
v = A = )

Stochastic formula From Ito formula,

dr(t) = dV'(t,S(t)) = [V + %UQSQ(t)V”’]dt +V"dS(t)
or 1
dr(t) = dV'(t, S(t)) = [V + rS(t)V" + 5aQSQ(t)V”’]dt +aSH)V"dW (t)
Differential Change in value, use Ito formula,
dV(t) = z(t)dS(t) + S(t)dx(t) + o*S*(t)V"dt + y(t)dA(t) + A(t)dy(t).

Assume self financing:
0= S(t)dx(t) + o*S*(t)V"dt + A(t)dy(t)

Then
d‘/;g = ﬂftdSt + ytdAt = T($t5t + ytAt)dt + I’tO'Sth/t = H/}dt + O“/;/Stth

Thus
d(e V(1)) = (—re "V (1) + re "V (0)dt + oe SOV AW (t) = oe ™ S()VAW (1)

It follows that V() = e "V (t) is a martingale so that

for any t¢.



