
Stochastic Integration Introduction

Abstract

Stochastic integration summary.

1 Integration by Taylor theorem and Reimann sums

Review Taylor’s theorem in calculus (non-stochastic case). Let f be defined on R × T with time set
T = [0, T ]. We create a discrete Riemann sum, for function t→ x(t) for t ∈ T then

f(T, x(T )) = f(0, x(0)) +
N∑
k=1

f (tk, x(tk))− f (tk−1, x(tk−1))

where we take (for example) ∆t = 1
N

and tk = k/N . We also write xk = x(tk). Let f have one
derivative in space and one derivative in time, then

f (tk, x(tk))− f (tk−1, x(tk−1)) = ft (tk−1, xk−1) (tk − tk−1) + fx (tk−1, xk−1) (xk − xk−1)

+o(tk − tk−1) + o(xk − xk−1)

Approximation Here the notation o indicates a term vanishing with respect to the argument, for
example yε = o(ε) if say |yε| < Cεα for some α > 1 and C < ∞. Moreover, xk − xk−1 = x′k−1(tk −
tk−1) + o(tk − tk−1). The important point is

∑
k(tk − tk−1)α → 0, as N → 0.

From this we have that

f(T, x(T )) = f(0, x(0)) +
NT∑
k=1

ft (tk−1, xk−1) (tk − tk−1) + fx (tk−1, xk−1) (xk − xk−1) (1.1)

= f(0, x(0)) +

∫ T

0

[ft (s, x(s)) + fx (s, x(s))x′(s)] ds

2 Stochastic integration by similar approach of Taylor’s the-

orem and Riemann sums

We attempt to reproduce this calculation for functions f(t,Wt) for Wiener process Wt.
In the deterministic case, fluctuations of x(t) are proportional to x′ in time ∆t. However, we know

that brownian motion Wt fluctuations are of order
√

∆t in a time step ∆t. Therefore, if we consider
only one spatial derivative we come across the following issue

u(t+ ∆t,Wt+∆t) = u(t,Wt) + u̇(t,Wt)[∆t] + u′(t,Wt)[Wt+∆t −Wt]

+o(∆t) + o(Wt+∆t −Wt)

the second term of little o remainders cannot be counted upon to sum up to something finite.
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Ito’s formula for functions of Brownian processes We therefore take 2 derivatives, and using
Taylor’s theorem we have

u(t+ ∆t,Wt+∆t) = u(t,Wt) + u̇(t,Wt)[∆t] + u′(t,Wt)[Wt+∆t −Wt] (2.1)

+1
2
u′′(t,Wt)[Wt+∆t −Wt]

2 + o(∆t) + o([Wt+∆t −Wt]
2)

putting these terms into a summation like (1.1) we have,

u(T,WT ) = u(0,W0) +
NT−1∑
i=0

u̇(ti,Wti)[ti+1 − ti] (2.2)

+
NT−1∑
i=0

u′(ti,Wti)[Wti+1
−Wti ] +

NT−1∑
i=0

1
2
u′′(ti,Wt0)[Wti+1

−Wti ]
2

we have dropped the little o terms for convenience. It is reasonable to expect that [Wti+1
−Wti ]

2 ∼
(ti+1 − ti) as ti+1 − ti → 0 by the 1/2-space time scaling. This is in fact true, although it is not a
trivial point to show, but we will assume it here for convenience. Therefore, we have Ito’s formula,

u(T,WT ) = u(0,W0) +

∫ T

0

u̇(t,Wt)dt+ 1
2

∫ T

0

u′′(t,Wt)dt+

∫ T

0

u′(t,Wt)dWt (2.3)

this formula is equivalent to the differential form

du(t,Wt) =
[
u̇(t,Wt) + 1

2
u′′(t,Wt)

]
dt+ u′(t,Wt)dWt (2.4)

Ito’s formula for functions of Stochastic processes measurable with respect to Brownian
motion Now that we understand the equation

dZt = Xtdt+ YtdWt (2.5)

we can reproduce (2.3), replacing Wt → Zt. To see how this plays out, return to (2.1)

u(t+ ∆t, Zt+∆t) = u(t, Zt) + u̇(t, Zt)[∆t] + u′(t, Zt)[Zt+∆t − Zt] (2.6)

+1
2
u′′(t, Zt)[Zt+∆t − Zt]2 + o(∆t) + o([Zt+∆t − Zt]2)

the differences in (2.6) are a discrete version of (2.5) i.e.

[Zt+∆t − Zt] ∼ Xt[∆t] + Yt[Wt+∆t −Wt]

and
[Zt+∆t − Zt]2 ∼ X2

t [∆t]2 + 2XtYt[(∆t)(Wt+∆t −Wt)] + Y 2
t [Wt+∆t −Wt]

2

as before, [Wt+∆t −Wt]
2 ∼ ∆t but the other terms vanish. Therefore, carrying out (2.2) we have the

following version of Ito’s formula,

u(T, ZT ) = u(0, Z0) +

∫ T

0

u̇(t, Zt)dt+ 1
2

∫ T

0

u′′(t, Zt)Y
2
t dt+

∫ T

0

u′(t, Zt)dZt (2.7)

which is equivalent to the differential form

du(t, Zt) =
[
u̇(t, Zt) + 1

2
u′′(t, Zt)Y

2
t

]
dt+ u′(t, Zt)dZt (2.8)

In both (2.7) and (2.8) the term dZt can be replaced by (2.5).
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3 Product rule

To derive product rule, let’s remind ourselves again about the product rule in the deterministic case.

∆[f(t)g(t)] = f(t+ ∆t)g(t+ ∆t)− f(t)g(t)

Adding zero to this equarion gives us,

∆[f(t)g(t)] = f(t+ ∆t)g(t+ ∆t)− f(t+ ∆t)g(t) + f(t+ ∆t)g(t)− f(t)g(t) (3.1)

= [f(t+ ∆t)g(t+ ∆t)− f(t)g(t+ ∆t)− f(t+ ∆t)g(t) + f(t)g(t)]

+ [f(t+ ∆t)g(t)− f(t)g(t)] + [f(t)g(t+ ∆)− f(t)g(t)]

= [f(t+ ∆t)− f(t)] · [g(t+ ∆t)− g(t)]

+ [f(t+ ∆t)− f(t)] g(t) + [g(t+ ∆)− g(t)] f(t)

This obtains for small ∆t,

∆[f(t)g(t)] = [f ′(t)g′(t)](∆t)2 + [f ′(t)g(t) + f(t)g′(t)](∆t)

Thus the [∆t]2 term vanishes in the ratio

[f(t)g(t)]′ =
∆[f(t)g(t)]

[∆t]
= f ′(t)g(t) + f(t)g′(t)

Of course this is easily extended to f1(t, x(t)) = f(t).
Now do the same for stochastic processes for i = 1, 2,

dZ
(i)
t = X

(i)
t dt+ Y

(i)
t dWt

Reverting again to the discrete version,

∆[Z
(1)
t Z

(2)
t ] =

[
Z

(1)
t+∆t − Z

(1)
t

]
·
[
Z

(2)
t+∆t − Z

(2)
t

]
(3.2)

+
[
Z

(1)
t+∆t − Z

(1)
t

]
Z

(2)
t +

[
Z

(2)
t+∆t − Z

(2)
t+∆t

]
Z

(1)
t

Again we determine which are the higher order terms which vanish, the differences on the second line
in (3.2) become our d terms and on the first line,[

Z
(1)
t+∆t − Z

(1)
t

]
·
[
Z

(2)
t+∆t − Z

(2)
t

]
= X

(1)
t X

(2)
t [∆t]2 + [X

(1)
t Y

(2)
t + Y

(2)
t X

(1)
t ](∆t)[Wt+∆t −Wt]

+Y
(1)
t Y

(2)
t [Wt+∆t −Wt]

2

and the only term which survives is the final term. There fore the product rule is

d[Z
(1)
t Z

(2)
t ] = Z

(1)
t dZ

(2)
t + Z

(2)
t dZ

(1)
t + Y

(1)
t Y

(2)
t dt

4 Examples

Let’s find the derivative of some terms.
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4.1 A stock price with log Brownian forcing

Consider u(t, x) = u0e
at+bx. The derivatives are

u̇ = au0e
at+bx = au, u′ = bu0e

at+bx = bu and u′′ = b2u0e
at+bx = b2u.

Therefore, for Zt = u(t,Wt), and applying (2.4) on u we have,

dZt = du(t,Wt) = (a+ 1
2
b2)udt+ budWt = (a+ 1

2
b2)Ztdt+ bZtdWt

Notice if we set b = 0 we have a deterministic process increasing exponentially at rate a. On the other
hand setting a = 0 gives Brownian forcing proportional to the value of the process. This forms the
stochastic model of a stock with forcing independent on disjoint intervals.

Thus, if we expect the value of the stock to drift at a rate of µ at a given time in proportion to
its current value and fluctuate at intensity σ relative to its current value the stochastic differential
equation of the stock is

dSt = µStdt+ σStdWt

which has solution
St = S0e

(µ− 1
2
σ2)t+σWt .

This corresponds to the process we derived for scaling the N step binomial model

log
St
S0

= (µ− 1

2
σ2)t+ σWt

Stock with continuous dividends Suppose the stock pays δ 1
N
S(t) on each time step. Then in the

continuous model we have
dSt = (r − δ)Stdt+ σStdWt

So that
St = S(0)e(r−δ− 1

2
σ2)t+σWt

5 Portfolios

At time t, holding is x(t), y(t) portfolio has value,

V (t, S(t)) = x(t)S(t) + y(t)A(t)

For S(t) value of stock and A(t) = ert the value of the bond.

dS(t) = rS(t)dt+ σS(t)dW (t), dA(t) = rertdt

European option/replicating portfolio Let V replicate a European option.
Recall in discrete version: S±(t) = S(t)(1 + r 1

N
± σ 1√

N
)

x(t) =
V (t+ 1/N, S+(t))− V (t+ 1/N, S−(t))

S+(t)− S−(t)

that is x(t) is derivative of V with respect to S value,

x(t) = V ′(t, S(t)).
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On the other hand, in the discrete version,

y(t) =
S+(t)V (S−(t))− S−(t)V (S+(t))

A(t+ 1/N)(S+(t)− S−(t))

then ‘adding zero’

y(t) =
S+(t)V (S−(t))− S+(t)V (S+(t)) + S+(t)V (S+(t))− S−(t)V (S+(t))

A(t+ 1/N)(S+(t)− S−(t))

Thus, taking the limit we have

y(t) =
z(t)

A(t)
=
V (t, S(t))− S(t)V ′(t, S(t))

A(t)

Stochastic formula From Ito formula,

dx(t) = dV ′(t, S(t)) = [V̇ ′ +
1

2
σ2S2(t)V ′′′]dt+ V ′′dS(t)

or

dx(t) = dV ′(t, S(t)) = [V̇ ′ + rS(t)V ′′ +
1

2
σ2S2(t)V ′′′]dt+ σS(t)V ′′dW (t)

Differential Change in value, use Ito formula,

dV (t) = x(t)dS(t) + S(t)dx(t) + σ2S2(t)V ′′dt+ y(t)dA(t) + A(t)dy(t).

Assume self financing:
0 = S(t)dx(t) + σ2S2(t)V ′′dt+ A(t)dy(t)

Then
dVt = xtdSt + ytdAt = r(xtSt + ytAt)dt+ xtσStdWt = rVtdt+ σV ′t StdWt

Thus

d(e−rtV (t)) = (−re−rtV (t) + re−rtV (t))dt+ σe−rtS(t)V ′dW (t) = σe−rtS(t)V ′dW (t)

It follows that Ṽ (t) = e−rtV (t) is a martingale so that

Ṽ (0) = E(Ṽ (t))

for any t.
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