Math 458 - Financial Mathematics for Actuaries II - Project # 2

Due: Midnight on Monday, November 13, 2023.

Objective: Use R and the numerical implementation of the lognormal model of stock
prices to estimate the price of put and call stock options.

Directions:

1. Introduction: This model is a good representation of how simulation within R
can be used to provided a probabilistic estimate of the fair price of a stock
option. In this project you will write an R script that will generate thousands
of possible stock prices in the future, use these prices to compute all option
payoffs at the end of 1 year, and then evaluate basic descriptive statistics of the
generated data to arrive at a box-whisker plot and a good estimate for the fair
market option price at time ¢ = 0. Finally you will compare your numerical
analysis with a theoretical model for the correct option price.

2. Models:

e Theory: The BSM theory of stock option pricing gives the price Cg of
a European call option and the Pgr of a European put option with the
aforementioned parameters. They are

Cp = N (dy) Soe ™" — N (dy) Ke™™"

and
PE =N (—dg) KG_TT - N (—dl) 506_6T.

e Simulation: Recall from class the lognormal pricing model for stocks where
the price at time T for a stock with price Sy at time ¢t = 0 is given by the
random variable

ST _ Soe(r—6—a2/2)T+a\/TZ' (1>

It follows that the payoff of any derivative based on S7 is also a random
variable. Statistical analysis of these payoffs can then be used to estimate
the arbitrage-free price of a derivative.

3. Method:

A) Open RStudio and create a new script that starts by loading the libraries
“stringr” and “magrittr” which we will use to format boxplots later
in this project.

B) Write an R script that

i) uses a for loop and the append command to iteratively compute
1000 different stock prices at time 7" = 1 year and, in the same loop,
constructs two vectors, one each for the corresponding payoffs of a 1-
year European put option and a 1-year European call option. To find
each stock price after 1 year, use formula (1) with a risk free rate of 7%,
a dividend rate of 2%, a stock volatility of 25%, an initial stock price of
$100, and the command rnorm (1,0, 1) to generate single normally
distributed random numbers Z. Your code should use variable names
for everything but Z in (1) so that you only have to change the model
parameters once to run your code for a different stock option.

ii) computes the means pp and uc for the 1000 elements of the separate
put and call payoff vectors in i) and then find the estimated option
prices using the present value formulae

T ~ =TT .
up and C(E ~ e Hos

PE ~e "

iii) repeats the above process 50 times using an outer for loop and the
append command to create a vector of 50 estimated option prices,
each of which is based on 1000 simulated stock prices;

iv) uses the wrapping function

wrap.it <- function(x, len)
sapply (x, function(y) paste(strwrap(y, len),
collapse ="\n"),
USE.NAMES = FALSE)

}

and the boxplot command

boxplot (optionvalueestimates, xlab=" ", ylab="final

stock price",col="1lightblue",notch=T,main=str_wrap (paste ("Mean
European put premium is $", round(optionprice,4), "

with K=$",K, " using ", optionsteps, " estimates, each

with ", stocksteps, " stock price simulations.", sep=""),60))

to create a plot of the form shown below for the case of a put option,
and a similar plot for the case of a call option. In the above command,
K is the strike price, optionsteps is the number of option payoff

C)

Final Stock Put Option Price ($)

estimates (50 in so far), and stocksteps is the number of stock prices
(1000 so far).

Estimated European Put Premium is
$8.24384 with K = $102 using 500
simulations, each with 10000 steps.

I S

8.5

8.4

8.3

8.2

R
I

8.1

8.0

7.9

How long does it take your code to run? You can find the runtime of your
script by inserting the line timer<-proc.time () at the beginning of
your code and proc.time () —timer at the end of your code. The time
under “elapsed” will be the time your code took to run.

Rerun your code from parts B) when you compute 500 estimates of the
option price using 10000 simulated stock prices, instead of 50 estimates of
the option price using 1000 simulated stock prices. How long does it take
your code to run compared to the original problem runtime you computed
in part C)?

Repeat parts B)-D) above using an R script that does not use a for loop
to create a vector of stock prices but instead uses the vector processing
power of R. Use the command rnorm (N, 0,1) to generate a vector of
N > 0 values of Z and the vector capabilities of exp () to quickly compute
a vector of N simulated stock prices using formula (1). Your code should
only include a single for loop and one use of the append command to
create a vector of M > 0 estimated option prices, each of which is based on
N > 0 stock prices.

For the final part of this project, use BSM formulas for a put and a call
option to compute C'g and P exactly. Then compare this theoretical result
with the prediction of your simulations from the earlier parts of the project.
Are they close? Assuming that BSM is perfect, what is the relative error
between your simulated prices and the theoretical prices? Explain.

