
Math 458 - Financial Mathematics for Actuaries II - Project # 0

Due: 11:59PM on Monday September 11, 2023.
Objective: Use R to accomplish basic calculations, learn how to manipulate various data
structures, and basic visualization with ggplot2.

Introduction: In this project your group with get familiar with some of the most basic
operations used in R. This will include installation of packages/libraries; construction and
labeling of vectors, matrices, and data frames; generation of random numbers; averages,
standard deviations; basic plots including the package ggplot2.

Project Instructions: Below are step-by-step instructions for objectives using R.

1. R Phase: For ALL work in R, always be sure to comment after your commands to tell
the reader what you are doing.

(a) Open RStudio and create new blank R script called

“ProjectZero LastNamesOfGroupMembers.R”

In the first three lines of the script use the comment feature of R to indicate
what this script is for, as shown below:

Darren Mason
Math458
Project 0 - Due on September 11, 2023 by midnight.

NOTE: Commenting/documenting code is incredibly important in programming.
It is essential for the reader of the code - you, me, or someone else - to be able to
understand its function and modify. All code you write in R this semester must
include comments!

(b) This section of your script should be preceded by the comment #Part (b) -
Arithmetic.

i. Use R to compute 3−5 ·3+99, ln(2), e0.15, and 6·2.3+42
34.2−3.62 by typing in the raw

expression and evaluating that line of your script. The exponential function
ex in R is exp(x) and the natural logarithm ln(x) in R is log(x).

ii. Copy and paste the four expressions you typed in and assign them (using
the <- operator) respectively to w,x,y,z. Note that these variables are
now listed in the Environment Panel of RStudio with their current values.

iii. Compute xx − yz/w2 and assign the answer to v, where in R, xy is written
as xˆy. Verify that you get v = 0.764612297700663.

(c) This section of your script should be preceded by the comment #Part (c) -
Creating, Manipulating, & Subsetting Vectors/Arrays.

i. Use the c() command to create an 8 element vector containing the last 8 dig-
its of your student ID. Assign this to the variable name studentID. Recall
that to create the vector (1,2,3,4), type in R the command c(1,2,3,4).

ii. Create a vector biday consisting of the eight digits of your birthday in the
format MMDDYEAR.

iii. Verify the length and class of these vectors using the class() and length()
commands.

iv. Use the rbind command to create a 2×8 matrix called rowarray consisting
of studentID as the first row and biday as the second row. Repeat this
process to create a 8×2 matrix called colarray using the cbind command.
Notice that these two arrays now show up in your RStudio environment tab
under the heading “data” Double-click on the two arrays and observe that
they are displayed in the coding/script pane of RStudio.

v. Use cbind to append to the right hand side of colarray any 8-digit vector.
Your matrix should now have 8 rows and 3 columns. Name it bigcolarray.
Then change the column names to "ID","BDAY","FAV VECTOR" using
the command

colnames(bigcolarray)<-c("ID","BDAY","FAV VECTOR").

vi. Use the dim command to verify the dimensions of rowarray, colarray,
and bigcolarray.

vii. Extract the first column of bigcolarray with the command
bigcolarray[,1], and the third row of bigcolarray with the com-
mand bigcolarray[3,]. Then extract upper right sub-matrix consisting
of the second-fourth rows of the last two columns of bigcolarray with
the command bigcolarray[2:4,2:3].

viii. Use the seq command to generate a vector called sequence1 with 6101
elements, with the first element being -3, the last element being 58, and with
increments of 0.01. Specifically type

sequence1<-seq(from=-3,to=58,by=0.01)

Create a similar sequence called sequence2 with first number 55, last num-
ber -6, with decrements of 0.01.

ix. Create vector sequencesum by adding sequence1 to sequence2. Verify
that the resulting vector has the sum of each pair of elements from the first
two vectors. Next create vector sequencediv by dividing sequence1 by
sequence2. Verify that the resulting vector has the ratio of each pair of
elements from the first two vectors.

x. Create new vectors sequence1short and sequencedivshort where you
have selected every 5th element of the first 500 elements of the original se-
quences of length 6101. Your new vectors should have length 100.∗ Then use

∗Hint: If you wanted to extract every other element of a vector myvec, you would use a vector of the

the plot command with the new 100-element length vectors and the options
xlab, ylab, main, col, cex=2, cex.lab=2, cex.axis=2,
& cex.main=2 to create the plot below.

Figure 1: First R Plot in Project #0.

The basic syntax of the plot command is

plot(sequence1short, sequencedivshort,xlab="x-axis
text",ylab="y-axis text",main="Title Text",col="plot color

choice",pch="point symbol choice",cex="number representing size of
point symbols",cex.lab="size of labels relative to

cex",cex.main="size of plot title relative to cex",cex.axis="size
of axis markings relative to cex")

NOTE: Available pch choices are below:

xi. Change the point shapes in the plot to upward pointing hollow triangles and
choose at least one other option in the plot not already used to modify the
below plot. command You will likely need to use the help command ?plot
to figure out what each of these options accomplishes.

(d) This section of your script should be preceded by the comment #Part (d) -
Basic Coding.

i. If statements: Here we will set up simple if/then control structure, along
with generating a message as a result.

A. Create a variable called mynumber which contains any number you
choose between 0 and 10.

B. Create a variable rannum of 1 random number between 0 and 10 using
the command

relevant logical values TRUE and FALSE command to choose them via

myvec[c(TRUE,FALSE)]

Figure 2: Plot point style choices for pch option in the plot command. Source: https://r-
charts.com/base-r/pch-symbols/.

rannum<-runif(n=1,min=0,max=10)

C. Use the if/else and cat commands to return the statement “My
number mynumber is less than the random number rannum.” when
mynumber<rannum and returns the statement “My number mynumber
is greater than or equal to the random number rannum.” when
mynumber≥rannum.

ii. For loops: Here we will program three “for loops”, one basic, and one that
interrogates a large vector of random numbers.

A. Write a for loop that computes the product of all odd numbers from 1
to 51. At the end of the loop, your code should produce the final message
“The product of all odd numbers between 1 and 51 is X”, where X is
your answer.

B. Write a for loop that counts the number of negative numbers in a list
of 5000 random numbers between -1 and 1, generated by the runif
command. Use an if/else command in the loop to count “+1” when
number is negative and does not count if the number is nonnegative.
Your code for this part should end with the text “The number of
negative numbers is Z”, where Z is the number of negative num-
bers.

C. Repeat the previous step, except compute the number of negative num-
bers in 2000 randomly generated vectors, each of which contains 5000
numbers. As part of this process your code should create a vector with
2000 elements, each of which is the # of negative numbers in one of
the randomly generated 5000-element vectors. Use the mean command
to find the average number of negative numbers in the 2000 vectors.
Your code should end with the sentence “The average number of
negative numbers in the 2000 random vectors is Z”,
where Z is the average. You will need a for loop outside of the for loop
from the previous step. This is called a nested for loop. What number
is closest to your average? Is it what you expected?

https://r-charts.com/base-r/pch-symbols/
https://r-charts.com/base-r/pch-symbols/

D. R allows for a much faster way to count the number of elements in
a vector that satisfy a certain condition. If myvector is your 5000
element vector of random numbers, the command sum(myvector<0)
will count the number of elements less than 0. Use this fact to modify
your code from the previous step so that you only use ONE for loop.
But this time, generate 10000 random vectors, each with 10000 elements.
Assign the name numnegs to the 10000 element vector that contains
the number of negative numbers found in each of the 10000 randomly
generated vectors of 10000 numbers between -1 and 1.

(e) This section of your script should be preceded by the comment #Part (e) -
Data Frames and ggplot2. R comes with many data sets built in to the
program. We will use one that contains information about diamonds to illustrate
some of the features of the powerful graphics package ggplot2. You can find
information about this dataset at

https://ggplot2.tidyverse.org/reference/diamonds.html.

i. Building Data Frames

A. Assign to n the maximum length of bigcolarray, rowarray, &
numnegs.

B. Add blank rows with entries “NA” to bigcolarray so that it now has
n rows, calling the output newbigcolarray. Since bigcolarray
already has 8 rows, the command to do this is

newbigcolarray<-rbind(bigcolarray,matrix(data=NA,ncol=3,
nrow = n-8))

C. Repeat the above step so that rowarray is replaced with newrowarray
which has enough rows of “NA” so that it now has the same number of
rows as bigcolarray.

D. Convert numnegs into a column vector (10000 rows and 1 column in-
stead of 1 row and 10000 columns) using the transpose command t().
Call the new vector tnumnegs.

E. Create a data frame df which binds together as columns newbigcolarray,
newrowarray, and tnumnegs. You will need to use the as.data.frame
command. Check the dimension of df.

F. Change the column names of df to, respectively, ID, BDAY, FAV,
Digit 1, Digit 2,. . ., Digit 8, Negative Count. Then dis-
play the head of the data frame.

ii. Plotting Data Frames: R comes with a very powerful plotting package called
ggplot2 that includes a variety of built in data frames such as on car
engines, flower geometry, or diamond prices. We will use the diamonds data
frame for this exercise.

A. First install the ggplot2 package with the command
install.packages("ggplot2"). Then type in the command

https://ggplot2.tidyverse.org/reference/diamonds.html

library(ggplot2). Note that you can also install the package using
the “Packages” tab in the lower right window of RStudio. I will show
you both methods in class.

B. Assign the diamonds data frame into the variable df1. Enter head(df1)
to check out the data frame. You can also click on df1 in the Environ-
ment tab.

C. Create your first plot of diamond data using the command

plot1<-ggplot(df1,aes(x=carat,y=price,color=clarity))
+ geom point()

Figure 3: First ggplot2 Plot in Project #0.

For the ggplot command, df1 is your data frame name, aes stands for
“aesthetics”, and then you assign to x, y, color your choice for the
x axis as the variable carat, the y axis as the variable price, and then
assign a color based on clarity. The “+ geom point()” command
adds to the plot the choice of plotting a point to represent your data.
There are more options for aes and geom point(). Your graph should
look like the image above.

D. Most of the “action” in the above plot is for diamonds that are less than
2.5 carats in weight. So create a new data frame called dfcarat which
excludes all diamonds with weight 2.5 carats or above. To do this, the
command is

dfcarat<-df1[df1$carat<2.5,]

The $ is used in R to identify a subset of the data frame df1 that you
want to use as a filter. In this case, it is the carat variable that we want.

E. Now create a second plot using ggplot and the the dfcarat data
frame to reproduce the previous plot, but with only diamonds of weight

less than 2.5 carats. Submit your graph and tell me what you found. Do
you notice any differences from previous graphs?

F. Suppose you are only interested in diamonds less than 2.5 carats in
weight, but with cut of grade “Fair” or “Ideal”. You can create a corre-
sponding data frame dfcut by requiring dfcarat$cut to be “in” the
vector c("Fair","Ideal") via

dfcut<-dfcarat[dfcarat$cut %in% c("Fair","Ideal"),]

G. Now create a third plot using ggplot and the the dfcut data frame to
reproduce the previous plot, but with only diamonds of weight less than
2.5 carats. then add to the plot the option “shape=cut” to the aesthet-
ics aes and the options alpha=0.5, size=1.5 in geom point(),
where here alpha represents opacity on a scale from 0 to 1 and size
represents the relative size of the points in the graph.

Figure 4: Third ggplot2 Plot in Project #0.

Submit your graph - it should look like the above graph. What can you
infer about how diamonds are priced from this plot?

H. Add the option geom smooth() to your second plot and include in
your solution. What do you see? The curves in your plot is the result
of a statistical technique called Generalized Adaptive Model that fits a
generalized nonlinear model to a set of data. In this case you should find
that the formula used is ‘y ~ s(x, bs = "cs")’, where cs stands
for ‘cubic splines”, a type of smooth curve fitting technique that uses
piecewise smooth third-order polynomials.

I. Add a title and axis labels to the graph by adding the feature

+ labs(title="Diamonds - Clarity, Cut, & Price",
x="Weight", y="Price ($)", color="Clarity")

Display the graph – it should look like the below graph:

Figure 5: Fifth ggplot2 Plot in Project #0.

J. The last graph you create is to add a theme element to the previous
plot so that you can adjust the color, font, face, and size of each la-
beling element individually. You will need the elements plot.title,
legend.title, legend.text, axis.title, & axis.text, each
of which uses the function element text() to set values. For example,
if the previous plot is called plot5, then I could add a legend title that
has color “turquoise3”, face “bold”, family/font “Arial”, and size “12”
with the command

plot6<-plot5 +
theme(legend.title=element text(color="turquoise3",

face = "bold", family = "Arial", size=18))

Using the above example as a template, change the plot title, axes labels,
and legend text as indicated in the below table.

Feature Color Family Face Size

plot.title Arial bold 22

legend.text cornflowerblue Arial italic 15

axis.title tomato3 Arial bold 18

axis.text orchid3 Arial bold.italic 15

Table 1: Table of theme() features for final R plot using ggplo2.

Your final graph should look like

Figure 6: Sixth ggplot2 Plot in Project #0.

