Math 458 - Financial Math for Actuaries II - Practice Exam # 2 - Fall 2023

1. Consider a European call option on a stock following the Black-Scholes framework. The option expires in one year. Using the Black-Scholes formula for the option, you obtain

$$N(d_1) = 0.6591$$
 and $N(d_2) = 0.3409$.

Find the volatility σ of the stock.

- 2. A market-maker sells a 1-year European put option on a non-dividend paying stock and Δ -hedges it. You are given
 - The current price of the stock is 50.
 - The put option is at-the-money.
 - The continuously compounded risk-free interest rate is 8%.
 - The volatility of the stock is 22%.
 - The option premium is 2.5632.
 - The option Δ is -0.3179.

After 1 week, the stock price is 49. Determine the amount of money required to purchase additional shares to maintain the Δ -hedge.

- A) -1.87
- B) -1.85
- C) -1.83
- D) -1.81
- E) -1.79
- 3. A stock has price 55, pays a continuous dividend rate of 2.5%, and has 20% continuous volatility. A portfolio Π has two European call options on this stock:
 - Call I allows purchase of 100 shares of the stock at the end of 3 months at a strike price of 55;
 - Call II allows purchase of 200 shares of the stock at the end of 6 months at a strike price of 60;

If the risk-free continuous rate is 4%, calculate the elasticity of the portfolio.

4. For two options on a non-dividend paying stock following the BSM framework, you are given:

Option	Δ	Г	θ	Option Premium
1	0.5600	0.0800	-0.0156	3.00
2	0.3000	0.0320	-0.0068	1.00

In the above table, θ is expressed *per day* and the stock's price is 50. Determine r, the continuously compounded risk-free interest rate.

- A) 0.043
- B) 0.045
- C) 0.048
- D) 0.051
- E) 0.054
- 5. A stock's price follows a lognormal distribution. To simulate its price over 10 years, scenarios are generated. In each scenario, the stock price at time t is generated by generating a standard normal random variable Z. Then $S_t = S_{t-1}e^{0.1+0.2Z}$ for t = 1, 2, ..., 10. Find the expected value of the ratio S_{10}/S_0 in this simulation.
- 6. You are given:
 - A stock has price 45.
 - A market-maker writes put option I on a stock with price 1.53, $\Delta = -0.39$, and $\Gamma = 0.072$.
 - The market-maker Δ - Γ hedges the option with the stock and with put option II having price 2.00, $\Delta = -0.31$, and $\Gamma = 0.038$.

Determine the number of shares of stock to buy to implement the hedge.

- A) 0.19
- B) 0.20
- C) 0.21
- D) 0.22
- E) 0.23
- 7. Let S_t be the price of a stock at time t. S_t follows a lognormal model and you are given the following information:
 - The continuously compounded expected annual rate of return on the stock is 15%.
 - The continuously compounded dividend rate is 2%.
 - The stock's volatility is 30%.
 - $S_0 = 80.$

Calculate the probability that a 4-year European call with strike K = 130 has a payoff of 20 at expiration.