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Chapter 1

Fast Fourier transforms for
nonequispaced data: A tutorial

Daniel Potts
Gabriele Steidl
Manfred Tasche

ABSTRACT In this section, we consider approzimate methods for the fast
computation of multivariate discrete Fourier transforms for nonequispaced
data (NDFT) in the time domain and in the frequency domain. In partic-
ular, we are interested in the approzimation error as function of the arith-
metic complexity of the algorithm. We discuss the robustness of NDFT -
algorithms with respect to roundoff errors and apply NDFT -algorithms for
the fast computation of Bessel transforms.

1.1 Introduction

Let % := [-1, 1) and Iy := {k € Z¢ : =& < k < I}, where the
inequalities hold componentwise. For x;, € 1%, v; € NII%, and f;, € C, we
are interested in the fast and robust computation of the discrete Fourier

transform for nonequispaced data (NDFT)

fl)) =Y fee ™o (jelu). (1.1)

keln

For arbitrary nodes, the direct evaluation of (1.1) takes O(N9M?) arith-
metical operations, too much for practical purposes. For equispaced nodes
zp = £ (k € Ix) and v; := j (j € Iy), the values f(v;) can be computed
by the well-known fast Fourier transform (FFT) with only O(N%log N)
arithmetical operations. However, the FFT requires sampling on an equally
spaced grid, which represents a significant limitation for many applications.
For example, most geographical data are sampled at individual observation
points or by fast moving measuring devises along lines. Using the ACT
method (aedaptive weight, conjugate gradient acceleration, Toeplitz matri-
ces) [12] for the approximation of functions from scattered data [22], one
has to solve a system of linear equations with a block Toeplitz matrix as
system matrix. The entries of this Toeplitz matrix are of the form (1.1)
and should be computed by efficient NDFT algorithms. Further applica-



2 Daniel Potts, Gabriele Steidl, Manfred Tasche

tions of the NDFT range from frequency analysis of astronomical data [19]
to modelling and imaging [4, 23].

Often either the nodes in time or in frequency domain lie on an equi-
spaced grid, i.e., we have to compute

f) =Y fre®™i/N (j e Tn) (1.2)
keln
or
h(k):= Y fie ™kui/N (k€ Iny). (1.3)
JjE€IN

Several methods were introduced for the fast evaluation of (1.2) and (1.3).
It may be useful to compare the different approaches by using the following
matrix-vector notation: For the univariate setting d = 1 and M = N, the
equations (1.2) can be written as

f=Anf (1.4)

with

N/2-1

Fom G o 1= GOl An= (72meN)

Note that (1.3) is simply the “transposed” version of (1.2), i.e.
h=ALf (1.5)

L1 N/2—1
with fu 1= (h(k)) L2y -
The different NDFT algorithms can be divided into three groups:

I. Based on local series expansions of the complex exponentials like Taylor
series [2] or series of prolate spheroidal functions [18] algorithms were de-
veloped which are more efficient than the direct evaluation of the NDFT. In

matrix-vector notation, the matrix Ay was approximated by the Hadamard
(componentwise) product o of the classical Fourier matriz

Fy := (e_%ikj/N)Nﬁil
jk=—N/2
and a low rank matrix E, i.e.
AN ~ FN oF.

The rank of E determines the approximation error. Multiplication of the
right-hand side with a vector means to perform rank(E) times an FFT of
length N.
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II. A quite different idea was introduced in [9] for the univariate case.
Note that the idea can be generalized for “line settings”. Using Lagrange
interpolation, the matrix Ay can be exactly splitted as

Ay = D1CD>Fy, (1.6)

where D; (i = 1,2) are diagonal matrices and where

C = (1 ((0/N) = (k)N

with a monotone decreasing function ¢. A. Dutt and V. Rokhlin [9] origi-
nally have used ¢(z) := tan(wz) — i. For real input data, a more efficient
modified version with ¢(z) := 1/z was suggested in [6]. See Figure 1.1. The
multiplication with C' can be approzimately realized by the fast multipole
method [13].

In contrast to the other NDFT methods, the splitting (1.6) works also
for the inverse matrix, i.e. Ay' = FyD3CT Dy, such that for suitably dis-
tributed nodes v;, the same algorithm can be used for the inverse transform.
For clustered nodes, the inverse approach does not work, since the entries
of the diagonal matrices differ extremely. See [6].

ITI. The most efficient NDFT algorithms for the computation of (1.2)
and (1.3) we have noticed the first time in [8, 4]. See also [5, 20]. In [25],
we proposed a unified approach to the efficient computations of (1.2) and
(1.3), which includes [8, 4]. In matrix-vector notation our approach to (1.2)
can be written as

Ay ~BF,D (n:=aN;a>1), (1.7)

with a modified diagonal matrix D and with a sparse matrix B with nonzero
entries ¢((vj/N) — (I/n)), where ¢ approximates . The approaches in
[8, 4] differ only by the choice of the window function ¢. Now we have
learned that this algorithm with several window functions ¢ is a remake of
a gridding algorithm, which was known in image processing context years
ago [23, 15, 19]. The gridding method is simply the transposed version of
(1.7) for the efficient computation of (1.3).

However, the dependence of speed and accuracy of the algorithm on the
choice of the oversampling factor o and the window width of ¢ was firstly
investigated in [8, 4]. In [25] the error estimates from [8] were improved,
which leads to citeria for the choice of the parameters of the algorithm.

In this paper, we repeat the unified approach (1.7) for the fast compu-
tation of (1.2) from [25] and show the relation to the gridding algorithm
for the fast computation of (1.3). We will see that our approach is also
closely connected with interpolation methods by “translates of one func-
tion” known from approximation theory. We include estimates of the ap-
proximation error.
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FIGURE 1.1. Time (in seconds) for straightforward computation of
NDFT, NDFT-algorithm in [8], FMM-based NDFT-algorithms in [9]
and [6] without consideration of initialization (precomputation) steps.

Section 1.3 contains an algorithm for the efficient computation of the
general NDFT (1.1).

In Section 1.4, we demonstrate another advantage of Algorithm 1.1,
namely its robustness with respect to roundoff errors, a feature which is
well-known from the classical FFT [21, 26].

Finally, we apply the NDFT in a fast Bessel transform algorithm.

1.2 NDFT for nonequispaced data either in time
or frequency domain

Let us begin with the computation of (1.2). Only for notational reasons,
we restrict our attention to the case M = N. We have to evaluate the
1-periodic trigonometric polynomial

f):= Y fre?m (1.8)

keln

at the nodes w; := v;/N € 1% (j € In). We introduce the oversampling
factor a > 1 and set n := aN.

Let ¢ be a 1-periodic function with uniformly convergent Fourier series.
We approximate f by

w0 =Y o) (19)

lel,
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Switching to the frequency domain, we obtain

s1(v) = Y grcr(ip) e (1.10)
kezZd
— Z gk Ck((P) e—27rik:v + Z Z gk Ck+m~(80) e—27ri(k+m")v
kel, reZd\{0} kel,
with _
gr =Y gre®™kim, (1.11)
lerl,
cr(p) == /go(v)ez’rik” dv (ke z9.
I1d

If the Fourier coefficients ¢y () become sufficiently small for k € Z\ I, and
if cx(¢) # 0 for k € Iy, then we suggest by comparing (1.8) with (1.10) to

set
A fk/ck((/)) kGIN,
Ik = { 0 k€ L\Iy. (1.12)

Now the values g; can be obtained from (1.11) by the reduced inverse d-
variate FF'T of size aN. If ¢ is also well-localized in time domain such that
it can be approximated by a l-periodic function 1 with suppvy N II¢ C
Zm11d (2m < n), then

fw) e m(u) msw) = Y g - 1) (113

l€ln,m (wj)

with I, ;m(w;) := {l € I, : nw; —m < 1 < nw; + m}. For fixed w; € 14,
the above sum contains at most (2m + 2)¢ nonzero summands.

In summary, we obtain the following algorithm for the fast computation
of (1.2) with O((aN)?log(aN)) arithmetical operations:

Algorithm 1.1. (Fast computation of NDFT (1.2))
Input: N€N, a>1,n:=aN, w; € ¢, fr, € C (j, k € In).

0. Precompute cx () (k € In), (w; — 1) (j € In,1 € Inm(w;)).
1. Form g := fr/ce(p) (k € In).
2. Compute by d—variate FFT

g = n~¢ Z Gk e~ 2mikl/n (leI,).
keln
3. Set l
S(U)j) = Z 9 ’(ﬁ(w]‘ — E) (] € IN) .

LEIn,m (wj5)
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Output: s(w;) approzimate value of f(w;) (j € In).

In the univariate setting d = 1 , Algorithm 1.1 reads in matrix-vector
notation as

Anf~ BF,Df,

where B denotes the sparse matrix

[\ N/2-1 /21
Bi= (w(wj - —)) (1.14)
/) j=—N/2,j=—n/2
and where
. N/2-1 T
D := (0| diag(1/(nex(@))p/* y/5 10) (1.15)

with (N,(n — N)/2)-zero matrices O.

If only few nodes v; differ from the equispaced nodes j, then the ap-
proximating function s; of f can be alternatively constructed by requiring
exact interpolation at the nodes j/n, i.e. f(j/n) = s1(j/n) (j € I,). As
consequence we have only to replace ci(¢) in step 1 of Algorithm 1.1 by
the discrete Fourier sum of (¢(I/n))ier, - The approximation of a function
f by an interpolating function s; which is a linear combinations of trans-
lates of one given function ¢ on a grid was considered in various papers in
approximation theory. See for example [16] and also [4].

Let us turn to the gridding algorithm for the fast computation of (1.3). It
seems to be useful to introduce the gridding idea by avoiding the convenient
notation with delta distributions. In short: For

g(x) =Y fielx +w)),
JjEIN
we obtain that
cr(9) = D fie " *icy(p) = h(k) ck(p) (k€ Z9)
JjEIN

such that h(k) in (1.3) can be computed, if ¢x(g) is known. Now we deter-
mine

cr(g) = [ Y fiela+w;) e’ dy
Hd jEIN

approximately by the trapezoidal rule

1 l —27ikl/n
Ck(g)%ﬁz ijv?(wj—ﬁ)e 2mikl/n

lel, jeln
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which introduces an aliasing error. Furthermore, we replace ¢ by its trun-
cated version 9, which introduces a truncation error. Obviously, this results
in a “transposed” Algorithm 1.1, which reads for d = 1 in matrix—vector
notation

Ay ~DTF,BT.
For | € I,, we introduce the index set J, ,(I) :={j € In: I —m < nw; <
I +m}.

Algorithm 1.2. (Fast computation of NDFT (1.3))
Input: N€N, a>1,n:=aN, w; € ¢, fr, € C (j,k € In).

0. Precompute ck(¢) (k€ In), Y(w; — L) (1 € In,j € Jum(1)).
1. Set
= > fiv ——) (€.
J€In,m (1)

2. Compute by d—variate FFT

= nid Z a1 e727rikl/n (k € IN).

leln

3. Form h(k) := &(g)/cx(¢) (k € In).
Output: h(k) approzimate value of h(k) (k € In).

Both algorithms introduce the same approximation errors. By (1.13), the
error splits as follows:

E(wj) := |f(w;) — s(w;)| < Eo(wy) + Et(w;)

with E,(w;) = |f(w;) — s1(wj)| and Ey(w;) = |s1(w;) — s(w;)|. Note
that E,(w;) and E;(w;) are the aliasing error and the truncation error
introduced by Algorithm 1.2, respectively. Let

Boo = max E(w;), [[fll = >l

keln

Then we obtain immediately by (1.8), (1.10) — (1.12) that

Baw;) < Il ’C*—("")‘ (1.16)
! keZIN TEZ;\{O} e ()
max ck+nr(ﬂo)‘
< [Iflh ma TEZdZ\{O} s )
and by (1.9), (1.11) — (1.13) that
[
) < 11l = (max (@)l ™) 3 ol — )~y — 1

lel,
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To fill these error estimates with life, we consider special functions ¢ in the
case d = 1. In [25], we have proved

Theorem 1.1.  Let (1.2) be computed by Algorithm 1.1 with the dilated, pe-
riodized Gaussian bell

o(v) = (ﬂ'b)_l/2 Ze—(n(v+r))2/b
reZ
and with the truncated version of @,

— —(n(v+r))?
1[)(1)) — (ﬂ'b) 1/2 Ze (n(v+r))=/b X[—m,m](n(v +’l")) .
reZ

Here X[—m,m] denotes the characteristic function of [-m,m]. Let o > 1 and

_(mky2
1§b§(22"‘%ﬁ.Then cr(p) = Ze G278 and

2011 a —2pr2 a
E ' < br2(1-1) 1 o 2b7° [ 1 - -
a(wj) < [fllie + (2a — 1)br2 +e + (2a + 1)bm? '
2 by emtr? (@)=
E . < 1 - b 2a
t(w]) = ||f||1 \/7r_b( +2m)e ’
B < 4||fllie™™ 0%,

The approximation error decreases with increasing b. Therefore

provides a good choice for b as function of « and m. For the above parameter
b, the approximation error and the truncation error are balanced. Since
2/ Vbr contributes also to the decay of E; (wj), we expect that the optimal
parameter b lies slightly above the value in (1.17). A. Dutt and V. Rokhlin
[8] does not give a criteria for the choice of the parameter b. They determine
b by trial computations. Moreover, our error estimate is sharper than the
estimate
Eoo < (b+9)[|f|lre '™ 22/

in [8].

For oversampling factor a = 2, the new paper [19] of J. Pelt contains
extensive numerical computations to determine the optimal parameter b as
function of m.

More recently, A. J. W. Duijndam and M. A. Schoneville [7] have eval-
uated the RMS-error of Algorithm 1.2 with the Gaussian pulse . They
found the same optimal parameter b as in (1.17), which confirms our re-
sult.

Estimates for the multivariate setting were given in [11, 7].
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Figure 1.2 illustrates our theoretical results by numerical tests. The tests
were implemented in MATLAB. The C—programs for Algorithm 1.1 were
taken from [6] and were included by cmex. The programs were tested on a
Sun SPARCstation 20 in double precision.

Let N = 2. As example we consider the computation of

2t—1

flwy) =Y e7?™kvi (j € I) (1.18)
k=0

with uniformly distributed random nodes w; € [—%,1). The exact vector
r t_l— . .
f= (f(wj))iz_ztl_l is given by

—2miw; (2 -1) _  2miw;

e

e
f(w]) = 1 — e2miw;

By f we denote the result of Algorithm 1.1 with ¢, as in Theorem 1.1,
m =15 a:=2 and b as in (1.17). Let

Exorr(t) :=logio(If = fll2)/IIfll2) -

Figure 1.2 (left) shows the error Exppr(10) for 10 numerical tests and for
various m = 6, .. ., 20. Figure 1.2 (right) presents the computation time (in
seconds) for the cascade summation of (1.2) and for Algorithm 1.1. Note
that for ¢ = 13 the fast Algorithm 1.1 requires for less than one second
while the direct method based on cascade summation takes more than 3
hours.
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FIGURE 1.2. Left: (m, Exprr(10)) for m = 6, ..., 20. Right: Computation
time in seconds for t =2,...,15.

Next, we consider centered cardinal B-splines as window functions, which
are in contrast to the Gaussian kernel of compact support such that we have
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no truncation error. Algorithm 1.2 with centered cardinal B-splines and
with a modified third step was originally introduced in [4]. The difference in
the third step was motivated by the tight frequency localization of Lemarié—
Battle scaling functions which arise in wavelet theory. See also [25]. With

Ms,,, we denote the centered cardinal B-spline of order 2m.

Theorem 1.2. Let (1.2) be computed by Algorithm 1.1 with the dilated, pe-

riodized, centered cardinal B-spline

P) = Mam(n(v+1)) (m>1)

of order 2m and let 1» = ¢. Then

k=0,

. 2m
w otherwise
kn/n

S|I—3I+=

and for a > 1 and 0 < n < 4m/3,

im AN —2m
B <5 (3) Qo= D7 fl.

N/2-1

Here |f|y,1 denotes the Sobolev-like seminorm |fln1:= >, |fellk|"-
k=—N/2

Proof: 1. For 0 <u < 1and m €N, it holds that

m 2m m 2m i m 2m
< 2 2
Z (u+r) - (u—l) + z(u—r)
r€Z\{0} r=2
2m S 2m
< 2( v ) +2/ ( u ) dz
u—1 1 u—x
2m
< im ( u ) .
- 2m—1 \u—1

2. Since ci(p) # 0 and
_ sin(kw/n) am _ [ sin(kw/n) am km/n am
nektm(p) = kn/n+rm N kr/n kr/n+rm

B k:/n 2m
nen(e) (k/n+r) ’

we obtain by (1.16) that

N/2-1

dm _ |k/n|?>™"
E. < ] ]
<1 2 Mllk’n (k/n — sgn(k))>™
k=—N/2
(k#0)
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The functions h(u) := w>™~"/(u — 1)*™ and h_(u) := v*™""/(u + 1)*™ are
monotonically increasing for u € [0, 1] and n < 4m/3. Thus, since |k| < N/2, we
obtain the assertion.

By Theorem 1.2, we have for n = 0 that

4m

E <
—2m-—-1

(20 = 1) f]x -

If the values fj, are Fourier coefficients of a smooth function such that | f|,,1
does not increase with N — oo, then the estimates with larger values of n
may be useful. For example, we obtain for « = = m = 2 by Theorem 1.2
that

92\ 5
Ey < (g) N_2|f|2,1-

Multivariate estimates were given in [11, 4].

In various papers, other window functions than the Gaussian pulse or
centered cardinal B—splines were considered:

prolate spheroidal functions and Kaiser-Bessel functions [15],

Gaussian pulse tapered with a Hanning window [7],

Gaussian kernels combined with sinc kernels [19],

special optimized windows [15, 7].

Numerical results demonstrate that the approximation error (as function
of the speed of the computation) can be further improved by using these
functions.

1.3 NDFT for nonequispaced data in time and
frequency domain

The following algorithm for the fast computation of the general NDFT (1.1)
(with M = N) turns out to be a combination of the gridding approach to
(1.3) and of our approach to (1.2). Moreover, in order to apply again an
aliasing formula, a periodization procedure becomes necessary. In order to
form a-periodic functions, a parameter a comes into the play.

By 1 € La(R?) we denote a sufficiently smooth function with Fourier
transform

1(v) = / 1 (@)e 2 dr # 0

Rd
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for all v € NII?. Then we obtain for

=Y fepi(m—ax)

keln

that '
— Z fk e—27r1:ckv @1 (U)

keln
and consequently .
G(vj) )

) = In).
f(UJ) (‘51(1]]_) (.7 € N)

Thus, given ¢;(v;), it remains to compute G(v;).
Let ny := ax N (aq > 1), my € N (2m1 < n1). We introduce the parameter
a:=1+ 2’”1 and rewrite G(v) as

o) = Y & [eie-m)er i

keln R4

= Z fr / Z ©1(z +ra — zp) e 2TV 4 (1.19)

keln ra rezd

Discretization of the integral by the rectangular rule leads to

G(v) => fini® > Z‘Pl +ra—xk)e 2mi(r+ra)y

k€N J€lan, rezd
(1.20)
Now we approximate the function ¢, by a function v; with suppyn C
2’”1 I%. Then the third sum in (1.20) contains only one nonzero summand
for 7 = 0. Changing the order of the summation, we obtain

S;(v) & S (v) :=n? Z (Z fio 1 (— —ﬂfk)> o= 2mite/n1

t€1an, \kEIN

After the computation of the inner sum for all ¢ € I,,,, we arrive at com-
putation problem (1.2), which can be solved in a fast way by Algorithm 1.1,
where the corresponding window functions and parameters are indicated
by the index 2. We summarize:

Algorithm 1.3. (Fast computation of NDFT (1.1))

Input: NeN, a1 >1,a2>1, n1:=a1N,a:=1+ 2;“—11, ng := a1az2alN,
zp € %, v; € NII%, f, € C (j,k € In).
0. Precompute $1(v;) (j € In), ¥1(5- — k) (k € In;t € Tang,m, (2k)),
ce(p2) (t € Lan,), ¢2(— —55) (G € IN,1 € Iny my (31)).
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1. Compute
t
:E fethi(— —xr) (€ Lun,).
ni

k€ln

2. Form f]t = F(t)/ct(gaz) (t € Ianl)-
3. Compute by d—variate FFT

go=nz® 3 ge e (e L,).
t€lan,
4. Form /
—d (Z .
= < _ In).
sw)=nit D el oo) (G€lv)

1€Ing,mo (vj/m1)
5. Form S(vj) := s(v;)/¢1(v;) (5 € In).
Output: S(v;) approzimate value of f(v;) (j € In).

The Algorithm 1.3 requires O((a;azaN)?log(ayazaN)) arithmetical op-
erations. The approximation error is given by

E(v;) < Ei(vj) + Ex(vj) + Es(vy)

with By (v;) = |f(vj) — 28|, By(vy) := |20l 520 and By(v;) o=

@1(vj) @1(v;)
|W| The error E3(v;) is the product of the error of Algorithm 1.1

and |1 (v;)| 7. The cut-off error E»(v;) behaves like the truncation error
in Algorithm 1.1. The error E;(v;) arising from the discretization of the
integral (1.19) can be estimated by an aliasing argument [11].

The following Table 1.1 (see also [10, 11]) contains the relative approxi-
mation error

masx |f(v;) = S(0)]/ max | (v;) -

introduced by Algorithm 1.3 for tensor products of Gaussian bells ¢; and
2, for N := 128, m = my = mo, a := Nme, = %, ay := 2 and for
randomly distributed nodes z; and v /N in II?. By the choice of aj,as
and a, the main effort of the algorithm consists in the bivariate FFT of
size 4N = 1024. The third column of Table 1.1 contains the error of Al-
gorithm 1.3, if we simply set @ = 1 and a3 = @y = 2. This change of
parameters influences only the first step of the algorithm. (A similar error
occurs, if we consider 1; as 1-periodic function.) Table 1.1 demonstrates
the significance of the parameter a.

1.4 Roundoff errors

Beyond the approximation error, the numerical computation of Algorithm
1.1 involves roundoff errors. In this section, we will see that similar to the
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_ _N _
O = Nom a = 1

5.96608e-06 0.0180850
5.44728e-08 0.0318376
1.07677e-09 0.0541445
11 3.31061e-11 0.0906439
13 1.26030e-12 0.1507300
15 2.16694e-13 0.2500920

© 3 O S

TABLE 1.1. Approximation error of Algorithm 1.3 for N := 128,
a:= %, ap = %, az :=2 and for a :=1, a1 = a2 := 2, respectively.

classical FFT [21, 14], our algorithm is robust with respect to roundoff
errors. In the following, we use the standard model of real floating point
arithmetic (see [14], p. 44): For arbitrary £,n € R and any operation o €
{+,—,%,/} the exact value £ o n and the computed value fl(§ on) are
related by
i o) =(§ o n)(1+0) (|6 <wu),
where u denotes the unit roundoff (or machine precision). In the case of
single precision (24 bits for the mantissa (with 1 sign bit), 8 bits for the
exponent), we have
u=2"2"~5096x10"8

and for double precision (53 bits for the mantissa (with 1 sign bit), 11 bits
for the exponent)

u=2""x~1.11x 107
Since complex arithmetic is implemented using real arithmetic, the com-
plex floating point arithmetic is a consequence of the corresponding real
arithmetic (see [14], pp. 78 — 80): For arbitrary £,n € C, we have

i¢+n) = E+n)1+9) (6 <w), (1.21)
2\/§u

fen) = en(1+8) (8< T (1.22)
In particular, if £ € RUiIR and 1 € C, then
fi(én) =&n(1+46) (16 <wu). (1.23)

To simplify the following error analysis, we assume that all entries of Ay,
B, F,, and D were precomputed exactly. Moreover, we restrict our atten-
tion to real input vectors f € RV . If we form f := Anf by conventional
multiplication and cascade summation (see [14], p. 70), then we obtain by
(1.21) and (1.23) the componentwise estimate

([logy N1 + 1)u
— ([logo N1+ Du

1809 - Fil <1 111l
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and by taking the Euclidean norm
I8(f) = fll2 < (wN ([logs NT+1) + O@?)) [I]l2 -
In particular, we have for f := Fy f that
I8(FNf) = Fn fll2 < (N (Mlogy NT+1) + Ow?)) [If]l2-

If we compute f = Fxf (f € RV, N power of 2) by the radix—2 Cooley—
Tukey FFT, then, following the lines of the proof in [26] and using (1.21)
— (1.22), the roundoff error estimate can be improved by the factor v/N,
more precisely

I8(FNf) = Fxfllz < (u(@+VIVNIog, N + O@?)) IIfll2 - (1.24)

The following theorem states that the roundoff error introduced by Algo-
rithm 1.1 can be estimated as the FFT error in (1.24) up to a constant
factor, which depends on m and a.

Theorem 1.3. Let m,N € N and let n := aN (a > 1) be a power of 2
with 2m <K n. Let h be a nonnegative real-valued even function, which decreases
monotonically for x > 0, and let

@) = ) hin+7),

reZ

Y@ = Y (Xemmh) (@ +1)).

reZ

Suppose that ¢ has a uniform convergent Fourier erpansion with monotone de-
creasing absolute values of Fourier coefficients

aulp) =+ W(ZE) (ke).

Let the nodes wj := 3 € [—1, 1) w; +1 (j € In) be distributed such that each
“window” [—% + %,% + %) (I € I,) contains at most y/a nodes. If (1.2) is
computed by Algorithm 1.1 with the above functions p,, i.e.,

f=BF.Df (feRY),

where D € C™N and B € RY™ are determined by (1.14) — (1.15), then the
roundoff error of Algorithm 1.1 can be estimated by

I8(F)—Fll> < 87 (u<4+ V3) VN (log, N +log, a + 221 1) +0<u2)) 111>

442

with
g (RO B
|h(m/a)]
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Let us call an algorithm for the computation of the NDFT (1.2) robust, if
for all f € RY there exists a positive constant kn with ky v < 1 such that

I8(F) = fll2 < (kyu+ O@?)) || f]]2 -

Then, by Theorem 1.3, Algorithm 1.1 is robust.

Proof: 1. First, we estimate the spectral norms of D and B ([14], p. 120). By
assumption and by (1.15), we see immediately that

IDll2 = ,gé%lnczc(@l_l = (nlensa(p))™" = lh(r/a)| ™" (1.25)

Since 9 is even and monotonically decreasing for = > 0, it is easy to check the
integral estimate

LS - <Ly + [ @ ae
n 7o) T n ’

lel, —1/2
Then it follows by definition of 1 that

> ! 2 e
le(wj_ﬁ) < h(0)+n/ h*(nz) dz

lel, —m/n

h*(0) + |[Al|Z, - (1.26)

IN

By definition (1.14) of the sparse matrix

N/2—1,n/2—1 k
B = (b.:k)j:/_N/Q,ég:_n/2 y bjk = ¢(wj - ;) )

we get for the j—th component (By); of By (y = (yk)Zf__nl/2 € C") that

2m 2
|(By);> < <Z 165, | |ykr|) (Bikr > 0, kr € {—n/2,...,n/2 = 1})
r=1

2m 2m
< <Z b?‘,k,) <Z yli) :
r=1 r=1

By (1.26), we have
2m k
Y bk < D wlws—)° < B0+ IR,
r=1 kel,

such that
2m
|(By);I* < (B*(0) + [IAIIZ,) D R, - (1.27)
r=1
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By assumption, each “window” [-2Z + L ™ 4 1) (] € I,,) contains at most v/a
nodes wj,w; =1 (j € In). Therefore each column of B contains at most v/«
nonzero entries such that by (1.27)

N/2-1
IByIE = D 1By)l* < T (h*0) +IIAllz,) Iyl
j=—-N/2
and consequently
1Bl < /2 (B2(0) + IBl12)* = 5. (1.28)

2. Next, it is easy to check that by (1.23) and (1.25)
I8(Df) = Dfll2 < ulh(m/a)| ™" [I£ll2 - (1.29)
From (1.25) it follows that
IB(DA)ll2 < IBDF) = Dflls + IDfll2 < la(m/)| " (w+ 1) [ fll2 - (1.30)
3. Set ¢ := (FL(A(Df)) and y := F, Df. Then we can estimate
g —yllz2 < 1§ — Fu(B(DF))ll2 + [|Fn(B(Df)) — FuDf]|2
such that by (1.24), (1.29) and (1.30)

19=yll2 < (u(d+V2)Vnalogyn+Ou”)) [A(Df)|l2
+ Vn [[8(Df) — Df|»
(/)| ™" (u(4 + V2)V/nlogy n + vru + O(u®)) || fll2- (1.31)

IA

4. Finally, we consider the error between fi(f) := fi(Bj) and f := By. By (1.28)
and (1.31), we obtain

I18(f) = Fll2 I8(B7) — Bill: + |IB(G — y)ll2
I8(B3) — Bill> + B|h(r/a)|" x

(u(d+ V)Vilog, n + i+ OW) [Ifll- (1.32)
By (1.21), (1.23) and (1.14), it follows from [14], p. 76 that

2mu

8(Bg) — Byl < 15— Bl

— 2mu
with [§] := (|gjk|)Zf__:/2 and consequently by (1.28) that

2mu
2" B 0
|| Bl 13l

(2mBu + O@W?)) lIgll> -

I8(BY) — Byl <

INA
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By (1.30) and (1.25), we obtain

llgll2

Thus

<
<

9 = yllz + llyll2 = [|[F=Dfll2 + Ow) ||£]]2

(Vo lh(r/a)| ™ + Ow) |Ifllz -

I£(Bg) - Bjll2 < (2m B vnlh(r/a)] " u+ O@?)) lIf]l2 -

Together with (1.32) this yields the assertion.

Note that v ~ 2m for “uniformly distributed” nodes w;.

(1.33)

Finally, we confirm our theoretical results by numerical exp(tarirnents. We
use the same setting as in Section 1.2. Further, let fo € C?> denote the
vector, which was evaluated by cascade summation of the right-hand side

of (1.18), and let

Eo(t) = log,(lfc = fll2)/IIf1l2) -

Figure 1.3 (left) shows the error Ec(t) for 10 numerical tests with var-
ious random nodes w; as function of the transform length N = 2*. For
comparison, Figure 1.3 (right) presents the corresponding error Expgr(t)
introduced by NDFT-Algorithm 1.1.
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1.5 Fast Bessel transform

In this section, we apply the NDFT for a fast Bessel transform. We are
interested in a fast algorithm for the computation of

/f z)dr (neNy), (1.34)
0

where

. e (:U/?)"+2k

is the Bessel function (of first kind) of order n. Let f be a real-valued,
compactly supported function with supp f C [0, a] (0 < a < o). Using
the formula (see [1], p. 361)

e—igcost _ o z J2k ) cos(2kt) + 2i Z J2k+1( ) cos(2k+1)¢
k=0

with
oo o
> +2 @
k=0 k=1

we obtain for z € [—1, 1] and ¢ € R that

DN | =

o
e—lgz — 9 Z' V& Tor(q) Tor(z) — 2i Z )* Jok11(q) Tarya (z) -
=0

Now multiplication with f(g) and integration with respect to ¢ yields

/ flg) e dg (1.35)
2 Z' f(2k) Top(z) — 2i Z f2k + 1) Topy1 (z) -
k=0

Note that
(Reh)(z) = (Reh)(—z), (Imh)(z)=— Tmh)(-z).
Finally, orthogonality of the Chebyshev polynomials T} (x)

L r ifk=1=0,
/w(m)Tk(a:)Tl(a:) dz = 7/2 k=140,
0 itk

-1
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with w(z) := (1 — 2%)~/? implies

fen = EF [uw@en@muwa, 030
feek+1) = %/w(m) (Im h)(z) Togs1(z)dz.  (1.37)

We approximate the integrals (1.35) — (1.37) by the following quadrature
formulas: First, we compute (1. 35) by the Simpson rule on the Chebyshev

grid {z; := cos (QI'H)” ;1=0,...,N/2 -1}, ie.,

N .
a a .
h(z) = by = oo > wjf(ﬁj)e‘lml/N (1=0,...,N/2—1). (1.38)
j=0

with
1 j=0,N,
wji=¢ 4 j=2k-1 (k=0,...,N/2),
2 j=2k (k=0,...,N/2-1).

We realize the NDFT (1.38) by Algorithm 1.1 in O(N log N) arithmetical
operations. Again, we choose p,% as in Theorem 1.1 with m := 15, := 2
and bin (1.17). Next, we compute (1.36) and (1.37) by the trapezoidal rule,
which results for k =0,...,N/2—1in

k)~ = TS 24(2L+ D
F@k) =~ fa=y 3 (Rehy) cos ===, (1.39)
N - k+1 N-1
f2k+1) = fopgr:= Z (Im fy) cos (2k + 1)(20 + 1)mr
1=0 2N
(1.40)

For the fast computation of (1.39) and (1.40) in O(N log N) arithmetical
operations we use the fast cosine transform of type II (DCT-II) proposed
in [24, 3]. In summary, we obtain the following algorithm for the fast com-
putation of the Bessel transform in O(N log N) arithmetical operations:

Algorithm 1.4. (Fast Computation of Bessel transform (1.34))
Input: N :=2¢, f(ja/N)€R (j=0,...,N).
1. Compute h; by (1.38) with Algorithm 1.1.

2. Set Re (hH—N/?—l) := Re (hN/Q,l), Im (hH_N/Q,l) = —Im (hN/Q,l) (l = 1, AN ,N/Z).
3. Compute (1.39) - (1.40) by fast DCT-IL.
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FIGURE 1.4. Left: (¢,E(t)) for t = 8,...,15 and f in (1.41). Right:
(t,E(t)) for t =7,...,12 and f in (1.43).

Output: f, approzimate value of f(n) (n=0,...,N —1).

We test Algorithm 1.4 by the following examples:
1. Consider

f(@) == e x10,0) (@) (1.41)
with a := 2000 and A = 0.01. By [17], p. 772 we have

/ e () de = (1+ N2)"Y2 (VIF A 4N,
0

such that we can approximate f (k) by

fB) =~ foi= A+ X2 (V1422407

By f, we denote the vector computed by Algorithm 1.4. Figure 1.4 (left)
shows the relative error

E(t) :=logyo (If = fll2)/ I fll2 - (1.42)

2. Let
f() = X[0,0(2) (1.43)
with a := 100. Then we have by [1], p. 480 that

/ Tn(z)dz =2 Juynia(a).
0 =0

We choose M such that Jog,41(100) < 10716 and set

M
f(k) ~ fk =2 Z J2l+k+1 (100) .

=0

Figure 1.4 (right) shows the corresponding error (1.42).
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