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RAPID COMPUTATION OF THE DISCRETE FOURIER TRANSFORM*

CHRIS ANDERSON AND MARIE DILLON DAHLEH

Abstract. Algorithms for the rapid computation of the forward and inverse discrete Fourier transform for points
which are nonequispaced or whose number is unrestricted are presented. The computational procedure is based on
approximation using a local Taylor series expansion and the fast Fourier transform (FFT). The forward transform
for nonequispaced points is computed as the solution of a linear system involving the inverse Fourier transform.
This latter system is solved using the iterative method GMRES with preconditioning. Numerical results are given to
confirm the efficiency of the algorithms.
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1. Introduction. The fast Fourier transform (FFT) [1] is a powerful tool used in nu-
merous applications ranging from signal processing to rock mechanics [4]. In order to use
the FFT one must have uniformly spaced data and numbers of points which are restricted to
have certain values (e.g., a power of 2 or a product of primes). The goal of this paper is to
describe a method for computing rapidly a forward and inverse discrete Fourier transform on
sets of.data points which are either n0nequispaced and/or are unrestricted in number. Our
method is similar in spirit to the papers of Dutt and Rokhlin [2], [3], in that the method relies
on approximation of results obtained with the standard FFT. The major differences between
the two approaches is that Dutt and Rokhlin utilize a fast multipole method to perform the
approximation whereas we use a local Taylor series expansions. Our method also differs in the
construction of the forward transform in that we employ a preconditioner and use an iterative
method which does not require the transpose of the inverse transform matrix. We found our
approach easier to implement because it is based on conventional computational techniques
which are easy to program, namely the standard FFT and Taylor series expansions whose
coefficients are computed spectrally.

In the next section we describe the specific computational problem associated with the
discrete forward and inverse Fourier transform. In 3 we give a detailed description of our
numerical algorithm. The key idea behind the inverse transform is to compute transformed
values at a set of equispaced points using a standard FFT and then approximate the required
values at the nonequispaced points (or arbitrary number) using local Taylor series expansions.
The derivatives necessary for these expansions are computed spectrally. The use of local
Taylor series expansions to represent the trigonometric sum is entirely appropriate since the
sum is an analytic function. The computational procedure for the forward transform of a set
of equispaced points of arbitrary number is the same as for the inverse transform (one just
interchanges the notion of coefficients and function values). For nonequispaced points the
forward transform is computed as the solution of a linear system of equations defined via the
inverse transform. This system is solved iteratively using the generalized minimum residual
method (GMRES) with preconditioning [5]. For each iteration an inverse Fourier transform
must be computed, but, because the number of iterations is quite small, the method is efficient.

2. The problem. In this paper we consider the forward Fourier transform as solving the
trigonometric interpolation problem: Given the N distinct data points {xj (not necessarily
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914 CHRIS ANDERSON AND MARIE DILLON DAHLEH

uniformly spaced) on the interval [0, 2zr] and associated function values {yj }, find the N
coefficients {ot so that the trigonometric sum formed with these coefficients interpolates the
given data; i.e.,

() "kxj
Otk etYJ

=0

(2)
N-1

Otk Z yje-i kxj

j=O

Alternately, the inverse discrete Fourier transform consists of evaluating the trigonometric
interpolant; i.e., given a set of Fourier coefficients { and a set of points {xj determine the
values {yj by evaluating the sums

(3)

Then

forj --0 N- 1.

3. The numerical method.

3.1. Inverse transform. Our procedure for the forward discrete Fourier transform uses
our construction of the inverse discrete Fourier transform, and so we describe the inverse
transform first. The procedure for the inverse transform consists of using the standard fast
inverse transform on a set of M 2q equispaced points to determine a set of local Taylor
series expansions centered at these points. The Taylor series expansions are then evaluated at
the desired set of nonequispaced points or equispaced points of arbitrary number.

Assume we have the N distinct points {xj in an interval [0, 27r] and we are given a set
of N Fourier coefficients {fl }. We first choose a value of M which is a power of 2, and for
which 2rr(N 1) < M. Let {m} be th set of M equispaced points in the interval [0, 2re].

Construct a new set of coefficients {/k by padding and scaling the coefficients {ilk },

M

k-- () ilk, k < N,

O, N<k<M.

M is introduced so that the inverse transform of the padded coef-The scaling factor

ficients {/ yields a function which is equivalent to that of the original coefficients
at the points {xj }.
Using the discrete inverse FFT, compute the values and the first p derivatives of the
function

(4)
M-1

keikY(x)
:0

N-I

ZkeikXj.YJ
=0

forj =0 N- 1.
The set of values {Otk} are thus the coefficients of the data {yj when expressed in the

discrete basis obtained by evaluating the Fourier basis elements at the nodes {xj }, i.e., the
discrete forward Fourier transform of {yj }.

If the points are equispaced, then the orthogonality of the discrete Fourier basis functions
implies that
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RAPID COMPUTATION OF THE DISCRETE FOURIER TRANSFORM 915

at the points {2"m}. The derivatives are evaluated spectrally; i.e., the pth derivative
is obtained by computing the inverse transform of a set of coefficients of the form
(i k )P/k.
For a given point xj, determine the closest of the equispaced points, say 2*, to it.
Using the values and derivatives of (4) at 2* one approximates the value at the point
xj by using a pth order Taylor series expansion about 2*.

The order p of the Taylor series expansion used is determined by the desired precision
required in the function values. If these values are required to a precision e (which may be
unit round-off) then the maximal order of the approximation required to do this is the value
of p so that

(5)
(p + 1)!

where ?’ max0<k<N-1 Iflk I. This follows from the fact that the error in an order p Taylor
expansion of an individual term in (4) with wavenumber k ,is bounded by

1 l3lhp+lkp+I Iflkl hp+lkp+l
M (p -t- 1)! g (p + 1)!

2Since k < N- and h- -ff we have

N (p+l)! N (p-t-l)! M N(p+l)!

The error in approximating the sum of N Fourier components is thus bounded by N times the
maximum of this value, i.e., (5). The estimate (5) is only a bound, and in the implementation
of the approximation procedure one adaptively determines the size of p that one should use;
i.e., one accumulates the Taylor series approximation term-by-term and stops when the error
is within the desired precision. Our computational experiments indicate that far fewer terms
than the number suggested by the error bound need be used.

3.2. Forward transform.

3.2.1. Equispaced points. If the points {xj are equispaced then the forward transform
of values {yj is given by

(6)
N-1

Olk Z yje-i kxl
j=O

Since xj j (2r-), then we can rewrite the sum as

N-1 N-1 N-1

Ol--Zyje-ikxj :Zyje-ijk()--yje-iJz
j=0 =0 j=0

Thus, the Otk’S are the values of the function ZT__= yj e
-i j z evaluated at the N equispaced

points Zk k (2re) in the interval [0, 27r ]. The task of evaluating the forward transform for
equispaced points thus has the same form as the evaluation of the inverse transform, so one can
use the technique for the inverse transform described previously with only slight modifications.
In particular, since the factor does not appear in the forward transform sum, one does not
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916 CHRIS ANDERSON AND MARIE DILLON DAHLEH

scale {yj} by () when padding these values to create the 34 values {j }. Also, the error
bound for the Taylor series approximation becomes

Nv
(7)

(p + 1)!

where v max0_<j_<u_ ]yj 1. While this error bound does depend on N, the dependence is
rather weak, and our computational experiments indicate that it is of no great concern.

The problem of the forward transform for nonequispaced points is more challenging
because the the coefficients {oek} are not given by the sum (6). Thus, a different procedure
must be employed. In our procedure we build upon the fact that we can compute the inverse
transform for nonequispaced points rapidly. In particular, the goal of the forward transform
is to find coefficients {ok} so that the inverse transform of these coefficients interpolates a
given set of function values {yj }. Expressed in matrix/vector notation, the forward transform
consists of finding the vector of coefficients ff so that the linear system

(8) a
is satisfied. A is the representation in matrix form of the inverse Fourier transform.

Our procedure for the forward transform is just to solve, the linear system (8) for the
coefficients o7. We choose to solve this system iteratively, because this will involve operations
of the form A for vectors , i.e., applications of the inverse transform which can be computed
efficiently using the technique described above.

The iterative method we choose to use was the GMRES method with preconditioning [5].
The GMRES method is a Krylov subspace iterative method for solving nonsymmetric linear
systems. There are several advantages to this method. First, each iteration can be performed
quickly because the bulk of the work is contained in the matrix multiplication step A(i)

which is just the evaluation of the inverse transform for each iterate. Second, it is optimal in
the sense that it minimizes the residual in a given Krylov subspace. Third, it does not require
the knowledge of At. The major disadvantage of this method is that it may require several
iterations to converge. At each iteration, one computes the next basis element for the Krylov
subspace. All previous basis elements are needed. If one needs a large number of iterations
to converge, then one may need significan storage for this procedure. However, with the
preconditioner described below, the method converges in a few iterations, and the storage
requirements of GMRES does not pose a problem.

A preconditioner for the system (8) consists of an operator which takes a set of values f
and returns another set of values o7. After some experimentation we found that a satisfactory
preconditioner was simply the forward Fourier transform of the values {yj assuming that they
are associated with equispaced points. (Thus the preconditioner is the exact inverse of the
matrix A in the case of equispaced points.)

4. Numerical experiments. We have implemented our method in Fortran using double
precision arithmetic. All the calculations were run on a Sparc 10. For the inverse transform
we report two types of errors. The first is the relative cx>norm which is defined to be

maxl</<N lY Yi]
E

maxl<i<N ]Yil

and the second is the relative 2-norm error defined by
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RAPID COMPUTATION OF THE DISCRETE FOURIER TRANSFORM 917

TABLE
p is the order of the Taylor series. Random .01 perturbation for the uniform grid. Smooth coefficients. Error

tolerance is 10-1.

N p bound p required Sec. Dir. sec.

16 17 7 .01 0

32 18 7 .02 .01

64 18 7 .03 .03

128 18 7 .09 .12

256 18 8 .21 .49

512 19 8 .48 2.02

1024 19 8 i.02 8.32

E E2
1.1825 10-8 1.2164 10-8

1.1792 10-8 1.5152 10-8

8.2338 10-9 i.2762 10-8

5.8926 10-9 1.3183 10-8

4.8255 10-9 1.4178 10-8

3.0118 10-9 1.4329 10-8

2.4349 10-9 1.4618 i0-8

TABLE 2
p is the order of the Taylor series. Random. perturbation for the uniform grid., Smooth coefficients. Error

tolerance is 10-l

N p bound p required Sec. Dir. sec. E
16 17 11 .01 0 1.6951 10-8

32 18 11 .03 .01 1.1192 10-8

64 18 11 .05 .05 8.0280 10-9

128 18 11 .12 .13 5.7089 10-9

256 18 11 .3 .49 4.4565 10-9

512 19 12 .68 2.02 3.8060 10-9

1024 19 12 1.56 8.32 4.0123 10-9

E2
1.6017 10-8

1.5587 10-8

1.4234 10-8

1.4554 l0-8

1.4754 10-8

1.4754 10-8

1.4547 10-8

TABLE 3
p is the order ofthe Taylor series. Random perturbation of. 1. Random coefficients. Error tolerance is 10-3

N p bound p required Sec. Dir. sec. E
16 17 11 .01 0 1.2223 10-8

32 18 11 .02 .01 8.0229 10--9

64 18 11 .05 .03 6.7398 10-9

128 18 11 .12 .12 4.9839 10-9

256 18 12 .32 .49 3.6305’ 10-9

512 19 12 .74 2.16 3.4041 10-9’

1024 19 12 1.63 8.14 2.4524 10-9

62
,9.1421 10-9

7.0160 10+/-9

7.1751 10-9

6.4089 10-9

5.8583 10-9

4.8901 x 10-9

4.0691 10-9

where y represents the approximation of the yi. For the forward transform we report the final
residual error.

4.1. Inverse transform experiments. The first set of experiments are concerned with
the inverse transform We consider two cases. In Tables 1-3, we present results for points
which are not equispaced but whose number is a power of 2. We examine how the degree
of nonuniformity of the points affects the number of terms in the Taylor series, p, needed to
obtain a desired accuracy. We define the nonuniform grid as follows:

Xj X;nif -Jr- h factor

where Xnif represents the jth grid point on a uniform grid, h is the grid spacing, r/a uniformly
distributed random number between 0 and 1, and factor is either .01 (Table 1) or .1 (Table
2). As one can see from Tables and 2, for both perturbation factors, our method is slower
than the direct evaluation of (3) for n < 64 and faster for n > 64. One would expect as
the perturbation factor increases from .01 to. 1, the number of Taylor series terms required to

D
ow

nl
oa

de
d 

04
/1

6/
14

 to
 3

5.
13

.1
90

.4
6.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



918 CHRIS ANDERSON AND MARIE DILLON DAHLEH

TABLE 4
p is the order ofthe Taylor series. Uniformly spaced nonpower of 2. Smooth coefficients. Error tolerance is 10-l.

N p bound p required Sec. Dir. sec.

11 17 8 .01 0

37 18 8 .04 .01

61 18 9 .04 .03

123 18 9 .1 .11

179 18 9 .26 .24

371 19 9 .49 1.04

E E2
1.5206 10-8 1.5441 10-8

9.4308 10-9 1.5486 10-8

1.0360 10-8 1.5632 10-8

7.0404 10-9 1.3590 10-8

6.7775 10-9 1.4953 10-8

5.2059 10-9 1.4134 10-8

TABLE 5
Forward transform. Random .01 perturbationfrom uniform grid.

N Iterations Sec.
16 3 .12

32 3 .22

64 3 .46

128 3 .98

256 3 2.32

512 4 6.69

Residualeor

5.8663 10-7

9.3676 10-7

8.8786 10-7

8.7670 10-7

9.6058 10-7

1.2012 10-8

TABLE 6
Forward transform. Random. perturbationfrom uniform grid.

N Iterations Sec. Residualeor

16 8 .25 1.0326 10-7

32 9 .59 4.09265 10-7

64 9 1.27 9.6050 10-7

128 i0 2.85 3.8367 10-7

256 10 6.95 7.1286 10-7

512 10 15.5 6.5907 10-7

obtain a given accuracy increases. This is in fact what happens. We use an error tolerance
of 10-l The number of points for which our method is faster than the direct method is
lower than the break-even point reported for a similar problem in either [2] or [3]. In [2], the
break-even point occurs for n > 256 and in [3] the break-even point occurs for n > 2048.

For Tables and 2, we use smooth Fourier coefficients generated by/3 sin(x). In
Table 3 we use randomly generated coefficients. The coefficients are contained in the interval
[0, 1]. As one can see, for a given perturbation factor, the required number of Taylor series
terms does not depend on the smoothness of the coefficients. Again, the order of the Taylor
series required is substantially lower than the order predicted by our error estimates.

In Table 4 we present the results for a calculation with uniformly spaced points which
are not a power of 2. One sees that our method is faster than the direct evaluation of (3) for
calculations of more than 371 points.

4.2. Forward transform experiments. As we have mentioned previously, the compu-
tational task for the forward transform for equally spaced points has the same form as that
for the inverse transform; therefore, there is no need to discuss it independently. Thus, in this
section we only consider the case of the forward transform for data which is nonequispaced
and whose number is a power of 2. In Tables 5 and 6, we consider a .01 perturbation and a. 1
perturbation, respectively. For a given perturbation the number of GMRES iterations needed
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RAPID COMPUTATION OF THE DISCRETE FOURIER TRANSFORM 919

to converge remains almost constant. This is an indication that the preconditioner is doing
a good job. Without the preconditioner the number of iterations increases dramatically with
increasing N.

As the size of the perturbation increases, the number of iterations also increases. One
should expect this behavior because the larger the perturbation the further the preconditioner
is from the true matrix inverse. Even so, a ten-fold increase in the perturbation produces less
than a three-fold increase in the CPU seconds needed for the calculation. In comparison with
directly evaluating (1), the break-even point for the forward transform is about N 4096. As
better preconditioners are developed this number should drop.

In [2], Dutt and Rohklin present an iterative method for the solution of the algebraic
problem. Our approach differs from theirs in that they use a conjugate gradient method
whereas we use GMRES. Since the matrix A in (8) is not symmetric, one cannot use the
conjugate gradient method directly for this system. Dutt and Rohklin therefore work with a
reformulation of the matrix problem. By using GMRES we avoid using this reformulation.
We also employ a preconditioner--a component we found to be critical for success.

5. Conclusions. In this paper we present a method for computing the forward and inverse
discrete Fourier transform. The method for the inverse transform (and the forward transform
Of equispaced data with arbitrary numbers of points) is a combination of the standard FFT and
approximation using local Taylor series expansions. Both the forward and inverse transforms
are easy to implement and faster than directly evaluating (1) and (3) for a reasonably small
number ofpoints. The procedures reduce significantly the penalty of using the discrete Fourier
transform on numbers of points which are not power of 2 or the product of primes.

The forward transform for nonequispaced data relies on the inverse transform and the
iterative method GMRES with a preconditioner. The choice ofthe preconditioner was essential
for the iterative method to converge rapidly. In our implementation wefound that the procedure
for the forward transform on nonequispaced points is less efficient than the direct method for
numbers of points less than 4096. However, with improved coding and development of more
appropriate preconditioners, this value should decrease. The methods presented here clearly
extend to higher-dimensional discrete Fourier transforms.
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