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CURVATURE MEASURES(1) 
BY 

HERBERT FEDERER 

1. Introduction. In the classical theory of convex subsets of Euclidean n 
space [BF; H] a major role is played by Minkowski's Quermassintegrale. 
These are, up to constant factors, the coefficients of the Steiner polynomial 
whose value at any positive number r equals the n dimensional measure of the 
r neighborhood of the convex set considered. For a set with sufficiently 
smooth boundary, they may be computed by integrating the symmetric func- 
tions of the principal curvatures over the bounding hypersurface. 

In the branch of classical differential geometry known as integral geom- 
etry [BE; S; C2] similar concepts have been studied without convexity as- 
sumption for certain types of sets, for example regions bounded by very 
smooth hypersurfaces. The central result of this study is the principal kine- 
matic formula for the integral, over the group of rigid motions of n space, 
of the Euler-Poincare characteristic of the intersection of two solid bodies, 
one fixed and the other moving. 

In [W] the formula of Steiner was extended to compact regular submani- 
folds of class 2 of n space, with coefficients expressed as integrals over the 
manifold of certain scalars associated with the Riemannian curvature tensor. 
This work was followed by the generalization of the Gauss-Bonnet Theorem 
[A; FE1; AW; C1]. 

All these classical investigations involve related geometric and measure 
theoretic curvature properties of various special types of point sets. The 
search for a general theory is an obvious challenge. Those subsets of n space 
which are to be the objects of such a theory must be singled out by some 
simple geometric property. Among these objects must be all convex sets and 
all regularly embedded manifolds of class 2 (possibly with regular boundary). 
The curvatures attached to these objects should have the global aspects of 
Minkowski's Quermassintegrale, yet be determined by local properties; hence 
it seems reasonable that they should be measures. Neither the definition of 
the curvature measures nor the statement of any important theorem about 
them may contain explicit assumptions of differentiability, because arbitrary 
convex sets are to be admissible objects. Whatever differentiability may be 
required for an auxiliary analytic or algebraic argument must be implied by 

Presented to the Society, January 30, 1958 under the title An integral formula, April '26, 
1958 under the title A general integral geometric formula with application to curvatures, and June 
21, 1958 under the title On sets with positive reach, applied to curvature theory; received by the 
editors September 18, 1958. The theory developed in this paper was also the topic of a series of 
lectures at the 1958 Summer Institute. 

(1) This work was supported in part by a Sloan Fellowship. 
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CURVATURE MEASURES 419 

the geometric properties. Of course, in order to be worth while, such a theory 
must contain natural generalizations of the principal kinematic formula and 
of the Gauss-Bonnet Theorem. 

This problem presents a timely challenge to a worker in modern real 
function theory, which was originally created in large part for the study of 
geometric questions. The results of the theory of area have greatly con- 
tributed to the understanding of first order tangential properties of point sets, 
and one can hope for similar success in dealing with second order differential 
geometric concepts such as curvature. In particular the author's previous 
work connecting Hausdorff measure with various integral geometric formulae 
[F3, 4, 5, 7] may be considered a first order antecedent of the second order 
theory developed in this paper. 

The objects treated here are the sets with positive reach; the reach of a sub- 
set A of Euclidean n space, En, is the largest e (possibly co) such that if 
xCEn and the distance, 8A(X), from x to A is smaller than e, then A contains 
a unique point, {A(X), nearest to x. Assuming that reach(A) >0, Steiner's 
formula is established in the following form: For each bounded Borel subset 
Q of En and for 0 ? r <reach (A), the n dimensional measure of 

En I{ x: 8A(X) ? r and (A(X) E Q} 

is given by a polynomial of degree at most n in r, say 
n 
, rn-ia(n - i)cji(AX Q) 
i=O 

where a(j) is the j dimensional measure of a spherical ball with radius 1 in Ej. 
Clearly the coefficients IDi(A, Q) are countably additive with respect to Q, 
defining the curvature measures 

(Do(A; * ), (D(A; X ***Xbn (A;X* 

If dim A-=k, then i(A, - )0 for i > k, bk(A, - ) is the restriction of the k 
dimensional Hausdorff measure to A, and the measures .(A, *) correspond- 
ing to i <k depend on second order properties of A. If a sequence of sets, all 
with reach at least e >0, is convergent relative to the Hausdorff metric, then 
the associated sequences of curvature measures converge weakly to the curva- 
ture measures of the limit set, whose reach is also at least e. In this way any 
set A with positive reach may be approximated in curvature by the solids 

{ X: 5A (X) < S} 

corresponding to s>0. If A, B and AUB have positive reach, so does A2nB, 
and 

ci(A, ) + Di(B7 )bi(A )U B, ) + cbi(A n B, ). 

If A CE. and BCEEn have positive reach, so does A XB CE. XEn- Em+n, 
and 
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420 HERBERT FEDERER [December 

4)k(A X B, *) = E (ji(,4, *) 0 4j(B, *) 
i+jr=k 

where 0 is the cartesian product of measures. The Gauss-Bonnet Theorem 
generalizes to the proposition that if A is a compact set with positive reach, 
then the total curvature bo(A, A) equals the Euler-Poincare characteristic of 
A. The new version of the principal integralgeometric formula states that if 
,I is a Haar measure of the group of isomnetries of En, A and B are subsets of 
En with positive reach, and B is compact, then AC'g(B) has positive reach 
for y almost all isometries g, and 

(D i[A n g(B), x -(4 o g-1) ]dlg 

= E 
Cn,k, 

4k(A, X))I(B, 

IJ/) k-t l=n+ i 

whenever X and A2 are bounded Baire functions on En, x with bounded sup- 
port; here Cn,k,l are constants determined by the choice of IA. 

Analytic methods can be used in the proof of some of these geometric 
theorems, because the concept of reach of a set A is closely related to differ- 
entiability properties of the functions 8A and (A. In fact, reach(A) ? e if and 
only if 8A is continuously differentiable on { x: 0 < BA (X) <E }. Furthermore, if 
reach(A) >s>t>0, then grad 3A is Lipschitzian on {x: t< BA(x) ?s}, and (A 

is Lipschitzian on { x: 3A (x) < s }; hence { x: BA (x) = s } is an n - 1 dimensional 
manifold of class 1, with Lipschitzian normal, whose second fundamental 
form exists almost everywhere. 

The computations involving curvature tensors are greatly simplified 
through use of the algebra A*(E) 0A*(E) and its trace function; here A*(E) 
is the covariant exterior algebra of a vectorspace E. A similar algebra has 
been used in [FL1, 2]. 

The paper contains a new integral formula concerning Hausdorff meas- 
ure, which is used here in the proof of the principal kinematic formula, but 
which also has other applications. Suppose X and Y are m and k dimensional 
Riemannian manifolds of class 1, m _ k, and f: X-> Y is a Lipschitzian map. 
For y E Y compute the m - k dimensional Hausdorff measure of f- { y }, and 
integrate over Y with respect to k dimensional Hausdorff measure. It is 
shown that this integral equals the integral over X, with respect to m dimen- 
sional Hausdorff measure, of the Jacobian whose value at x is the norm of the 
linear transformation of k-vectors induced by the differential of f at x. This 
result is the counterpart of the classical integral formula for area, which deals 
with the case when mn ? k. 

2. Some definitions. The purpose of 2.1 to 2.9 is only to fix notations con- 
cerning certain well known concepts; more details may be found in references 
such as [S] and [B2] regarding 2.3, [L2] regarding 2.4, [F4] regarding 2.6 
and 2.7, [L1] regarding 2.8, and [B1I, [W2] or [F9] regarding 2.9. Some new 
material occurs in 2.10 to 2.13. 
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1959] CURVATURE MEASURES 421 

2.1. DEFINITION. En is the n dimensional Euclidean space consisting of all 
sequences x = (xi, , xn) of real numbers, with the inner product 

n 
X y = xiyi for x, y E En. 

i=l 

G. is the orthogonal group of En. With zCEn associate the translation 

T: En -> En, T,(x) = z + x for x E En. 

With RE-Gn and WEEn_m associate the m dimensional plane 

X'(R, w) = R(En n I x : Xi = wi for i = 1, n *,nmI). 

2.2. DEFINITION. Suppose f maps an open subset of En into Em. 
If f is differentiable (in the sense of Frechet) at x, then the differential 

Df (x) is the linear transformation of En into Em characterized by the equation 

lim I f(x + h) -f(x)- [Df(x)] (h) |/i hi = 0. 

In case m =1, grad f(x) En is characterized by the property that 

[Df(x)](Ih) = [grad f(x)] 0 h for h E En. 

For i = 1, * , n, Dif(x) is the partial derivative of f at x in the direction 
ot the vector whose coordinates are 0 except the ith, which equals 1. 

2.3. DEFINITION. Use will be made both of Caratheodory outer measures 
[S, Chapter 2] and of countably additive functions [S, Chapter 1] on the 
class of all Borel sets with compact closure in a locally compact space, which 
will be called Radon measures in accordance with [B2, Chapter 3]. A measure 
,u over a space X may be thought of either as a function on a suitable class 
of subsets of X, or as a function on a suitable class of functions on X. It is 
convenient to use the alternate notations 

ff(x)dyx = fd = f 
With each Radon measure ut one associates its variation measure j 
With measures A and v over X and Y one associates the cartesian product 

measure A (D0v over X X Y. 
2.4. DEFINITION. Ln is the n dimensional Lebesgue measure over En. On is 

the Haar measure of Gn such that O n(Gn) = 1. 
Under the map which associates with (z, R) E,,XG, the isometry T, o R 

of En, the image of the measure Ln0Og5b is a Haar measure of the group of 
isometries of En. 

Under the map X', the image of the measure On 0 Ln-m is a Haar measure 
for the space of all m dimensional planes in En, invariant under the group of 
isometries of En. 
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422 HERBERT FEDERER [December 

2.5. DEFINITION. 

a(k) = Lk(EkCr, {x: I xl < 1}) = 2kr(-) r( )r(k+ 1)-i, 

r k + I 
) n - k + I 

3(n,k) = a(k) a(n-k) 2 2 

a(n)() r r 

-y(n, k, 1) = f3(n, k)f(n, 1) 
f3(n, k + I - n)3(2n - k - 1, n - 1) 

(k+ I)(I 1)I 

(2 )(2) 

(k + I-n + )(n +1) 

2.6. DEFINITION. HI is the k dimensional Hausdorff measure. If A is a 
subset of a metric space, then Hk(A) equals the limit, as r-*O+, of the infimum 
of the sums 

E 2-ka(k) diameter(S)k 
SEF 

corresponding to all countable coverings F of A such that diameter(S) <r 
for SEF. 

2.7. DEFINITION. A subset of a metric space is called k rectifiable if and 
only if it is the image of a bounded subset of Ek under a Lipschitzian map. 
The union of a countable family of k rectifiable sets is said to be countably k 
rectifiable. 

2.8. REMARK. Since differentiability is invariant under continuously dif- 
ferentiable homeomorphisms, this concept remains meaningful for maps of 
manifolds of class 1. An intrinsic tangent vector v of a manifold of class 1 
at a point p may be thought of as operating on every function f which maps 
some neighborhood of p into some Euclidean space and which is differentiable 
at p; then df(v) ==v(f). 

Tn generalizing measure theoretic properties from En to an n-dimensional 
Riemannian manifold of class 1, one replaces Ln by Hn. A Lipschitzian map 
of such a manifold into some other Riemann manifold is differentiable Hn al- 
most everywhere. 

If X and Y are m and n dimensional Riemannian manifolds of class 1, then 

Hm+n(S) = (Hm 0 Hn)(S) for S C X X Y. 

Using matrices, one may think of Gn as an n(n- 1)/2 dimensional compact 
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19591 CURVATURE MEASURES 423 

submanifold of En,2. Then the left and right translations of Gn are induced by 
elements of Gn2, hence Hn(n-l)12 induces a Haar measure over Gn and 

Hn (n-1)2(S) = Hn(n-1)'2(Gn) -4n (S) for S C Gn. 

2.9. DEFINITION. For each finite dimensional real vectorspace E and 
k=O, , dim E let 

Ak(E) and Ak(E) 

be the associated spaces of k-vectors and k-covectors (contravariant and co- 
variant skewsymmetric tensors of rank k). Also let 

dim E dim E 

A*(E)= ED Ak(E) and A*(E)= ff Ak (E) 
k=O k=O 

be the corresponding exterior algebras, with the Grassman multiplication A. 
With each inner product of E one associates the unique inner products of 

A*(E) and A *(E) such that the Grassman products of the subsets of- any 
orthonormal base of E form an orthonormal base of A*(E), and the Grassman 
products of the subsets of the dual base of Al(E) form an orthonormal base 
of A*(E). 

2.10. DEFINITION. Suppose X and Y are Riemannian manifolds of class 1, 
f: X->Y, and 

k = inf {dim X, dim Y}. 

If pEX, f is differentiable at p, E and F are the tangent spaces of X and Y 
at p and f(p), then the differential of f induces dual linear transformations of 
Ak(E) into Ak(F) and of Ak(F) into Ak(E) with the common norm 

Jf(p). 

Using the matrix of the differential of f at p with respect to orthonormal bases 
for E and F, one computes Jf(p) as the square root of the sum of the squares 
of the determinants of the k by k minors of this matrix. 

2.11. DEFINITION. Suppose E is an n dimensional real vector space. Con- 
sider the tensor products 

Ak l(E) = Ak(E) 0, Al(E) for k, I = 0, 1, . . . , n 

n 

A**(E) = A*(E) 0 A*(E) = D Ak l(E) 
k, 1=O 

and make A**(E) into an associative algebra by defining the product 

(a ? b)*(c 0 d) = (a A c) 0 (b A d) for a, b, c, d C A*(E). 

Observe that while A*(E) is anticommutative, A**(E) is not anticommuta- 
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424 HERBERT FEDERER [December 

tive. However this definition has the advantage that the subalgebra 

n 

ffl Ak,k (E) 
k=O 

is commutative. 
This construction is natural; a linear transformation f: E-*F induces a 

homomorphism f *: A * * (F) --A * * (E). 
Now fix an inner product * of E. The corresponding inner product 0 of 

A*(E) induces a unique inner product 0 of A**(E) such that 

(a 0 b) 0 (c O d) = (a * c)(b O d) for a, b, c, d C A*(E). 

On the other hand the inner product of A*(E) corresponds to a real valued 
linear function on A**(E), the trace, which is characterized by the formula 

trace(a 0 b) = a * b for a, b E A*(E). 

Since Ak(E) is the conjugate space of Ak(E), there is a natural isomorphism 
of Ak,k(E) onto the space of bilinear forms of Ak(E); if a, bCAk(E), then the 
bilinear form B corresponding to (aob) is given by the equation 

B(x, y) = a(x)b(y) for x, y E Ak(E). 

Furthermore the space of bilinear forms of Ak(E) is isomorphic with the space 
of endomorphisms of Ak(E); a bilinear form B and the corresponding endo- 
morphism T are related by the formula 

B(x, y) = T(x) 0 y for x, y C Ak(E). 

In particular, if 01, , an form an orthonormal base of A'(E) and 
n 

I-? 0= X i A1?1(E)o 
i=1 

then the inner product and the identity endomorphism correspond to I. 
2.1 2. REMARK. Assume the conditions of 2.11 and suppose Gi, * * * , On 

form an orthonormal base of A'(E). For k=0, * , n let Sk be the class of 
all subsets of {1, , n} with k elements, and for aCSk let 

Oa Oa, AOa2A AOak 

where a1 <a2 < < <ak are the elements of a. Then the following statements 
hold: 

(1) {tOaOb: aeSi, bCSj} is an orthonormal base of Aiti(E). 
(2) If MCAi,i(E) and NCAk l(E), then 

(3) If MCA'11(E), then lMkl <?k!JMk. 
(4) If MCAk,k(E) and j=0, * * *, n-k, then 
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19591 CURVATURE MEASURES 425 

trace (MN) = (n -k) (n- k -j) !-1 trace (M). 

(5) If MCA 1(E) and f is the endomorphism of E corresponding to M, 
then 

n 

M =f*(O.) 0 O 
i=1 

and the endomorphism of Ak(E) induced by f corresponds to 

k!-lMk = >jf*(O) (0 Oa. 
aESk 

Consequently det(f) = trace(n!-lMn) and the characteristic polynomial off is 
n 

trace[n-l(M - XI)n] = trace(k!-lMk). (-X)n-k. 
k=O 

n 
(6) If W1 ** WnCA'(E) and M= wi0Oi, then 

n n 

A wi = trace(nV-lMn) A oi. 
i=1 i=1 

The verification of (1), (4), (5) is quite easy. Furthermore (3) follows by 
induction from (2), and (6) follows from (5) with wi=f*(Oi). To prove (2), 
use (1) to expand 

M - E Ma,bOa $) OOb, N= Nc,dO9c ( Od. 

(a,b)ESiXSj (c,d)ESkXSI 

For (u, V) Si+kXSJ+I let 

P(u, v) = (Si X Si X Sk X S1) r { (a, b, c, d): a U c - u, b U d = v}, 

and for (a, b, c, d)EP(u, v) choose Ea,c= ?1 and Eb,d = ?1 so that 

Oa A Oc = Ea, cOu and Ob A Od = Eb,dOv. 

Using (1), H6lder's inequality and the fact that the set P(u, v) are disjoint, 
one obtains 

| MN 12 [ Ma,bNc,dEa,cEb,dl 
(u,v)eSi+kXSj+L (a,b,c,d)eP(u,v) 

< (Ma,bNC,A2 ( ) 
+ 

(u,v)eSi+kXSj+? (a,b,c,d)EP(u,v) \ / 

(i + k) (j + I) E (Ma,b)2(Nc,d)2 
t v1 ~~~~(a, b, c,d) E SiXSjXS kXSI 
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426 HERBERT FEDERER [December 

2.13. REMARK. Under the conditions of 2.11 it is true that if a real valued 
linear function Q on A 'k(E) is invariant under the endomorphisms of Ak k(E) 
induced by the orthogonal transformations of E, then Q is a real multiple of the 
trace. 

In fact, using the notations of 2.12, one sees that if a, bESk, then 

Q(Ga 0 Ob) = 0 in case a s b, 

because if iGa-b and f is the orthogonal transformation of E such that 
f*(Gj) =-Gs and f *(Gj) =Oj for j$i, then 

Q(Oa 0 Gb) = Q[f*(Ga 0 Gb)] = Q(GOa 0 Gb) = Q(Ga 0 Gb); 

furthermore 
Q(Ga 0 Ga) = Q(Gb 0 Gb) 

because if a1< a2< . . < ak and b1 b2< ... < bk are the elements of a and 
b, then there is an orthogonal transformation f of E such that 

f*(Oai) = Obi for i = 1, , k, hence f* (Oa) = b. 

Consequently Q = Q(Ga 0Ga) trace, where a C Sk. 

3. An integral formula concerning Hausdorff measure(2). Complement- 
ing the classical integral formula for the area of a map f: X-* Y such that 
dim X <dim Y, the theorem proved in this section concerns the case when 
dim X ? dim Y. The original motivation leading to the discovery of this theo- 
rem was the simplification of certain arguments in [DG]; in fact, if X=A 
=Em and Y=E1, then the formula becomes 

A | gradf(x) dLmX = X Hm-1(f-1{y})dy. 

The theorem will be used in the present paper to prove the kinematic for- 
mula, and may be expected to have further applications. 

3.1. THEOREM. If X and Y are separable Riemannian manifolds of class 1 
with 

dim X = m > k = dim Y 

and f: X-* Y is a Lipschitzian map, then 

'AJf(x)dHx = f Hm-k(A n f-1{y})dHky 

(2) The author's abstract containing this formula was received by the American Mathe- 
matical Society on November 22, 1957, and published in the Notices of the American Mathe- 
matical Society as Abstract 542-43 in vol. 5 (1958) p. 167. At the 1958 Summer Institute L. C. 
Young announced his independent discovery of a very similar theorem and distributed copies 
of his Technical Summary Report No. 28, U. S. Army Mathematics Research Center, Univer- 
sity of Wisconsin, May, 1958, which contains an outline of his argument. 
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1959] CURVATURE MEASURES 427 

whenever A is an Hm measurable subset of X, and consequently 

fbg(x)Jf(x)dHmx = f f g(x)dHm-kxdHky 

whenever g is an Hm integrable function on X. 

Proof. Suppose M is a Lipschitz constant for f and let A be the measure 
over X such that 

pA(A) = f*Hm-k(A njf-1{y} )dHky 

for A CX, where I" means upper integral. For aEX, let 

K(a, r) = XGn {x: distance (x, a) < r 

whenever r >O, and let 

,u'(a) = lim ,4[K(a, r)]/Hm[K(a, r)]. 
,r-O+ 

The remainder of the argument is divided into seven parts, leading to the 
first conclusion stated in the theorem. The second conclusion may be derived 
from the first by the usual algebraic and limit procedure, starting with the 
case in which g is the characteristic function of an Hm measurable set. 

PART 1. If A CX, then 

,>(A) < Ml (k)a(m k) Hm(A). 
a(m) 

This inequality was proved in [F7, ?3 ]. 
PART 2. If A is an Hm measurable subset of X and 

v(y) = Hm-k(A nf-'{y}) 

for y Y, then v is an Hk measurable function. 
Proof. If Hm(A) = O it follows from Part 1 that v(y) = O for Hk almost all 

y in Y. Since every Hm measurable subset A of X is the union of an increasing 
sequence of compact sets and a set of Hm measure zero, it will be sufficient 
to consider the special case in which A is compact. 

For n= 1, 2, 3, * * * and yE Y let vn(y) be the infimum of 

Z 2k-m(m - k)[diam (S) ]m-k 
SEG 

where G is a countable open covering of A NC- { y } such that diam (S) <n- 
whenever SEG; then 

v(y) = lim vn(y). 
n-- ya 
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428 HERBERT FEDERER [December 

Since A is compact, every open covering of A C\fl{ y } is also a covering of 
A nf-l{ z } provided z is sufficiently close to y. Accordingly the functions v. 
are uppersemicontinuous. 

PAFT 3. If A is an Hm measurable subset of X, then 

u(A) = Hm-k(A cf-1{y})dHky = f:/'(X)dHmX. 

Proof. The first equation follows from Part 2 and the definition of A. It 
shows that Au is completely additive on the class of all Hm measurable subsets 
of X. On the other hand it follows from Part 1 that Au is absolutely continuous 
with respect to Hm. Accordingly l is the indefinite integral of its derivative /'. 

PART 4. If aX= Em, Y= Ek, f is continuously differentiable in a neighbor- 
hood of a and Jf (a) = 0, then ,u'(a) = 0. 

Proof. Suppose E>0. Since range Df(a) #Ek there is a real valued linear 
function q on Ek such that q =1 and q o Df (a) = 0. The continuity of Df at a 
implies the existence of a convex neighborhood U of a such that 

q oDf(x) < EM forxE U, 

whence 

I (qof)(x) -(qof)(z) ?< EM x - z| for x, z C U. 

Furthermore, since A is invariant under rotations of Ek, one may assume that 

q (y) = yk for y C Ek. 

It follows that if S is the endomorphism of Ek such that 

S(y) = (yl, Yk-1, elyk) for y C Ek, 

then 

(Sof)(x)-(Sof)(z)I <2M |x-zI for x,zEU. 

Applying Part 3 to f and S o f, and Part 1 to S o f, one concludes that if A 
is an Hm measurable subset of U then 

X(A)= fHm-k (A f-1{y})dHky 
Ek 

- fEkHm-k [A n (S of)-l{S(y)} ]dHky 
Ek 

- ef JHm-k [A n (Sof)-1{w}]dHkw 
Ek 

< E(2M)k (k)c(m k) Hm(A). 
a(m) 
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PART 5. If aeX=EEm, Y=EEk and f is continuously differentiable in a 
neighborhood of a, then ,u'(a) = Jf (a). 

Proof. In view of Part 4 suppose Jf(a) $0. Since 

dim kernel Df(a) = m - k 

and both Jf and ,u' are invariant under rotations of Em, one may assume that 

Dif(a) = O for i = k + 1,** *,m. 

Letting F: Em,,-*Em be the map such that if xCEEm then 

[F(x)]i = [f(x)]i for i = 1, * , ky 

[F(x)]i = xi for i = k + 1,* m 

one sees that 

JF(a) = Jf(a) %;z 0. 

Accordingly, if r is a small positive number and A =K(a, r), then F is con- 
tinuously differentiable and univalent on A. For yeEk let 

B = Em-k nI {Z: (yi, yk, Zi, . . 
*, Zm-k) E F(A)} 

gv: B, -* Em, 

gv(z) = (F I A) (y, **, yk, zj, * *, Zm-k) for z E By, 

and observe that Bv is open, gy is continuously differentiable and univalent, 
with 

range gv = A nfl{y}. 

It follows from the classical formula for area (see [F4, 5.9]) that 

u(A)= f Hm-k(A nf-1{y})dHky 
Ek 

- J'w fJzJg,(z)dLm-kzdLky 

EkB 

- 'F (AJg(WI, ,Wk)(wk+7 1*1 * wm)dLmw 
F(A) 

Jgf (x) (xk+ 1 ... * Xm)JF(X)dLmx. 

Accordingly, if r is small, then ,i(A)/Hm(A) is close to 

Jgf (a) (ak+l, * * , am)JF(a) = Jf(a). 

PART 6. If aEX and f is continuously differentiable in a neighborhood of a, 
then ,u'(a)= Jf(a). 
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Proof. Suppose 1 <t < oo. Choose open neighborhoods U of a and V of 
f(a), and continuously differentiable maps 

P: U -Em and Q: V -* Ek 

such that 

< P(x) ( ) {< t 
for x, z E U, 

distance (x, z) 
= 

- < Q(Y) Q(W) < t for y, w C V. 
distance (y, w) 

= 

It Tollows that suitable powers of t will serve as bounds for the effect of P 
and Q on Hausdorff measures and Jacobians. In fact suppose that r>O, 

A = K(x, r) C U and f(A) C V, 

let F= Q of o P-' and observe that 

A n f- { y } = p-1 [P(A) n F-1 { Q(y) }] for y C V. 

Applying Part 3 to f, and Parts 3 and 5 to F, one obtains 

i(A) = f Hm-k(A n 1f-1{y})dHky 

< 1m-k f Hm-k[P(A) n F-1{ Q(y) } ]dHky 

< tm fHm-k[P(A) n F-1{ q} ]dHkq 
Ek 

<tm+ JF(p)d(mp 
P(A) 

-< tm+2kJ Jf [P- (p) ]dHmp 
P(A) 

< t2m+2k fJf(x)dHmx, 

and similarly 

(AA) > t-2m-2k fJf(x)dHmX 

Dividing by Hm(A) and letting r- O +, one concludes that the extreme 
limits of 

,4[K(a, r)]/Hm[K(a, r)] 
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lie between 
t-2m-2kJf(a) and t2m+2kJf(a). 

PART 7. If A is an Hm measurable subset of X, then 

it(A) = Jf(x)dHmx. 

Proof. Proceeding as in [F2, 4.3] or [W1], choose disjoint closed subsets 
Ci, C2, C3, * * * of X and continuously differentiable maps fi, f2y fa ... of 
X into Y such that 

Htm (X - u Ci) 0, 

f| ci=fJ ci for i = 1, 2, 3,*. 
Applying Parts 3 and 6 to fi and observing that 

Jfi(x) = Jf(x) 

whenever x is a point of density of Ci and f is differentiable at x, one obtains 

fmmH-k( A \ Ci r) f-1{y})dHky 

- fs Hm-k(A rC CiC r fT1{ y})dHky 

- fAflCiJfi(x)dHmx = fA Jf(x)dHm"x 
Anci AnCi 

for i= 1, 2, 3, ... . Accordingly Part 1 implies that 
00 

1u(A) = u 1(A rl C) 
it=1 

00 

- Ei Jf(x)dHmx = fff(x)dHmx. 
i=1 nciA 

3.2. REMARK. The preceding argument shows also that f{y} is count- 
ably Hausdorff m - k rectifiable (see [F4]) for IJ almost all y in Y. 

In case X is a submanifold of class 1 of En, Hm-k(A flf { y}) may be 
computed for Hk almost all y in Y by means of the integralgeometric formula 
[F4, 5.14], and one obtains 

fHm-k(A rtf- 1 { y })dHky = 8(nM -k)-1 k f u(R, w) d(Qn 0 Lm-k) (R w), 
wnXEe-k 

where 
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u(R, w) H JH[A C n-V?k(R, w) nf-fl{ }]dHk 
y~~~ 

is the classical area of fJ [Ar\X m+k(R, w)]. It follows that, if A is open in X, 
then the above integrals depend lowersemicontinuously on f, and un- 
doubtedly it would be possible to develop (for m ? k) a theory of "coarea" 
dual to the existing (for m?k) theory of Lebesgue area [R; CE; F8; DF]. 

4. Sets with positive reach. Here these sets are introduced, and are 
shown to have quite reasonable metric and tangential properties. If two sets 
in suitably general relative position belong to this class, so does their inter- 
section. The class contains all convex sets, as well as all those sets which can 
be defined locally by means of finitely many equations, f(x) = 0, and inequali- 
ties, f(x) < 0, using real valued continuously differentiable functions, f, whose 
gradients are Lipschitzian and satisfy a certain independence condition; 
therefore regular submanifolds of class 2 of En, with or without regular bound- 
ary, are included. 

The concept of reach originates from the unique nearest point property, 
but toward the end of this section it is proved that a closed set has positive 
reach if and only if it makes uniform second order contact with its tangent 
cones. Then it follows that the class of sets with positive reach is closed under 
bi-Lipschitzian maps with Lipschitzian differentials. 

4.1. DEFINITION. If A CE., then 5A is the function on E. such that 

3A(X) = distance(x, A) = inf x - a a C A} 

whenever xCEn. Furthermore 

Unp(A) 

is the set of all those points xCE. for which there exists a unique point of A 
nearest to x, and the map 

tA: Unp(A) -* A 

associates with xEzGUnp(A) the unique aCEA such that AA (X) x-al. 
If aCA, then 

reach(A, a) 

is the supremum of the set of all numbers r for which 

{x: x-al < r} C Unp(A). 

Also 

reach(A) = inf {reach(A, a): a C A}. 

4.2. REMARK. Suppose A CEn. Then reach(A, a) is continuous with re- 
spect to aGA, and 
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1959] CURVATURE MEASURES 433 

0 < reach(Boundary A, a) < reach(A, a) < oo 

for a C Boundary A. If reach(A) > 0, then A is closed. 
A well known characterization of convexity, deducible from 4.8(8), states 

that reach(A) = oo if and only if A is convex and closed. 
4.3. DEFINITION. If A CEn and aGA, then the set 

Tan(A, a) 

of all tangent vectors of A at a consists of all those uGE. such that either u is 
the null vector or for every e>0 there exists a point b EA with 

b -a u 
0 < l b-a l < and b I - _ < 

4.4. DEFINITION. If A CEn and aCA, then the set 

Nor(A, a) 

of all normal vectors of A at a consists of all those vEE. such that 

v * u ? 0 whenever u E Tan(A, a). 

4.5. REMARK. Recall that a subset C of En is a convex cone if and only if 
x+yCC and XxCC whenever x, yCC and X>0. For every subset S of E., 

Dual(S) = {v: v @ u ? 0 for all u E S} 

is a closed convex cone, and Dual [Dual(S) ] is the smallest nonempty closed 
convex cone containing S. Furthermore 

Dual(S1 + S2) = Dual(Si) n Dual(S2) 

for any two subsets S1 and S2 of En containing the origin, and 

Dual(S1 n S2) = Dual(S1) + Dual(S2) 

in case S1 and S2 are closed convex cones. Also, for every closed convex cone C, 

dim C + dim Dual(C) _ n 

with equality holding if and only if C is a vectorspace. 
Accordingly 

Nor(A, a) = Dual[Tan(A, a)] 

is always a closed convex cone, while Tan(A, a) is closed and positively homo- 
geneous but not necessarily convex. 

4.6. REMARK. If A is a submanifold of class 1 of E., f: A -E, is the inclu- 
sion map, and aEA, then df maps the intrinsic tangent space of A at a iso- 
metrically onto Tan(A, a). 

4.7. LEMMA. Suppose f is a real valued Lipschitzian function on an open 
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subset W of En, j is an integer between 1 and n, and g is a real valued continuous 
function on W such that 

D,f(x) g(x) whenever f is differentiable at x. 

Then 

Djf(x) = g(x) for all x C W. 

Proof. Suppose wEW, r>O and {x: |x-w| <2r} CW. Let y be the jth 
unit vector. According to Rademacher's theorem f is differentiable L. almost 
everywhere in W, and for L. almost all x within r of w it is true that 

f(x + ty) -f(x) f DJ(x + uy) du g(x + uy)du 

whenever I tI <r. From the continuity of f and g it follows that 

t 
f(w + ty) -f(w) f0g(w + uy)du whenever |t| <r, 

and finally that Djf(w) = g(w). 

4.8. THEOREM. For every nonempty closed subset A of E. the following state- 
ments hold, with 5=5A, t=lA, U=Unp(A): 

(1) I3(x)-8(y) | <|Ix-y | whenever x, yEEn. 
(2) If aEA and 

P= {v:t(a+v) = a, Q= {v:5(a+v) = Ivi }I 

then P and Q are convex and PCQCNor(A, a). 
(3) If xGCEn-A and S is differentiable at x, then xE U and 

x - (x) 
grad 5(x) - 

O(X) 

(4) t is continuous. 
(5) 5 is continuously differentiable on Int(U-A) and 52 is continuously 

differentiable on Int U with 

grad 62(x) = 2[x - t(x)] for x E Int U. 

(6) If a GA, v EEn and 

0 < r sup{ t: t(a + tv) = a4 < oo, 

then a +rv E Int U. 
(7) If xE U, a= (x), reach(A, a) >0 and bCA, then 

(x-a) * (a-b) I_ 2 -a 
b11 

x 
' a 
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(8) If O <r <q < oo, xe U, ye U and 

5(x) ? r, 5(y) < r, reach[A, t(x)] > q, reach[A, t(y)] > q, 

then 

t(x)-_t(y) < q rx-yI. 

(9) If O < s < r < reach(A), then grad 5 is Lipschitzian on { x: s _ ?(x) r}, 
and grad 52 is Lipschitzian on {x: (x) r}. 

(10) If aeA,then 

Tan(A, a) = {u: lim inf tt0 6(a + tu) = O 
t--O+ 

(11) If aCA, reach(A, a)>r>O, uCEE and 

u * v _ 0 whenever t(a + v) = a, vi = r, 

then 

lim t-16(a + tu) = 0. 
9-0+ 

(12) If aEA and reach(A, a)>r>O, then 

Nor(A, a) = {Xv: X _ 0, I v I = r, t(a + v) =a, 

Tan(A, a) is the convex cone dual to Nor(A, a), and 

lim t-'6(a + tu) = 0 for u E Tan(A, a). 
t40+ 

(13) If 

N= {(a, v): a G A and v E Nor(A, a)}, 

a: N E. E, u(a, v) a + vfor (a, v) E N, 

#: U EnX En, #(X) = (Q(x), x-(x)) for x E U, 

then 

a(N) = En, a is Lipschitizian, 

i/(U) C N, J/ is a homeomorphism, O., = f|(U). 

If furthermore 

K C A, 0 < r < q, reach(A, a) _ qfor a E K, 

W = U nI {x: t(x) E K and b(x) ; r}, 

then 
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#(W) = NC {(a, v): a E K and I v| < r}, 

V I W is Lipschitzian; 

in case K is compact and 0< t < oo , then 

N r {(a, v): a E K and l vI < t} is compact. 

Proof of (1). Choosing aEA so that 8(x) = I x-a i, one obtains 

6(y)-S(x) < I y-a i - I x-al < I y-xi . 

Proof of (2). Assume a = 0 and note that 

vE Pif andonlyif ib-vi > vl forallb E A-{a}, 

v E Q if and only if ib- v > Iv for all b E A. 

Furthermore 

I b-vi 2- I V|2 = b * (b-2v) whenever b, v C EE, 

and consequently, if b, v, wEE., s>O0 t>0, s+t=1, then 

b - (sv + tw) 12- I sv + twi2 = b * (b - 2sv - 2tw) 
= b * [s(b - 2v) + t(b - 2w)] = sb 0 (b - 2v) + lb 0 (b - 2w) 

= s(i b - vi2 - I V12) + t(i b -W12 - I W12) 

It follows that P and Q are convex, and clearly PCQ. 
Finally suppose v EQ. If b A- { a}, then I b i 2> 2b 0 v, hence 

v b <Ibi 
b 2 

This shows that v*u<0 for uETan(A, a). 
Proof of (3). If aEA and b(x) = I x-aI, then (2) implies 

6[x + t(a - x)] = 8(x) -t(x) for 0 < t _ 1, 

whence 

x - a D8(x)(a - x) 
grad 6Wx * --) -bx = 1. 

8(x) -5(x) 

Since |grad 8(x)1 $1, by (1), it follows that grad 8(x)=(x-a)/ (x). 
Proof of (4). Otherwise there exists an e> 0 and a sequence x1, X2, X3, . . . 

of points of U convergent to a point xE U and such that i t(xi) - (x) > e for 
i = 1, 2, 3, * * * . Then 

I t(Xi) -x, I = 6(xi), { (xi) -x I _ 6(x) + 21 xi x- x 

hence all the points (xi) lie in a bounded subset of the closed set A, and pass- 
ing to a subsequence one may assume that the sequence (x1), (X2), (X3), *. 
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converges to a point a(EA. But then 

3(x) = lim 5(xi)=lim I l(xi)-xxi = - a-xI, 
t-+o t-* 

hence a-= g(x), which is incompatible with 

a a-t(x) lim I t(xi) - (x) | _e. 

Proof of (5). According to (1) and (4) the right member of the equation 
in (3) represents a continuous map of U-A into E.. Since the components of 
the left member of this equation are Dl*(x), * * , Dj8(x), it follows from 
Lemma 4.7 that a has continuous partial derivatives on W= Int(U-A). 

In case xE W, the stated formula for grad 62(x) follows from the equation 
in (3). In case xCA, 32(x+h) _ I h| 2 for hE.E, hence grad 62(x) =0, and also 
t(x) =x. Accordingly the formula holds for all xEInt U, and the continuity 
of the right member, guaranteed by (4), implies the continuity of grad 82 

on Int U. 
Proof of (6). Assume lvi =1 and y=a+rveInt U. Then (4) and (3) 

imply that (y) =a, a (y) =r, y EA, grad 8(y) =v. 
In view of (5) one may apply Peano's existence theorem for solutions of 

differential equations to obtain an r>O and a map 

C: {s: - r < s < r} -* Int(U - A) 

such that 

C' (grad 8) o C and C(O) = y. 

If 1 sI <r, then I C'(s) =|grad 8 [C(s)]| = 1 and 

(Bo C)'(s) = grad 5[C(s)1 * C'(s) C'(s) 0 C'(s) = 1. 

Accordingly, if -r <p <q <r, then 

JI C'(s) I ds = f(8 o C)'(s)ds = b[C(q)] -[C(p)] < I C(q) -C(p)| 

It follows that the curve C parameterizes a straight line segment in the 
direction C' (0) = grad 8(y) = v. 

If O<s<r and t=T+s, then 

C(s) = y + sv = a + tv, S[C(s)] = 5(y) + s = I C(s) -a 

hence t(a +tv) =a, with t >'r, contrary to the definition of T. 

Proof of (7). Assume xqa and 'let 

v 
x- a 

S-{It:(a+tv)=a}. 
I - al 
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Since I x-aj a S, sup S>0 and it follows from (6) that 

sup S ? reach(A, a). 

Moreover, if 0<tES, then 

a + tv-b b b(a + tv) = t, |a-b 2+ 2tv * (a-b) + t2 > t2 

2tv * (a -b) >-| a -b |2) (x -a) * (a -b) a - |ab 2 |x x-a 112t. 
Proof of (8). Letting a = (x) and b=t(y), one infers from (7) that 

(x - a) 0 (a - b) > - a-b 12 r/2q 

and symmetrically 

(y - b) 0 (b - a) I b - a 12 r/2q. 

Therefore 

Ix-yI *Ia-b | (x-y) * (a-b) 
= [(a - b) + (x - a) + (b - y)] 0 (a - b) 
> a - b12(1-rq), 

|x - y _ a - bl (q - r)/q. 

Proof of (9). Combine (8), (1), (3) and (5). 
Proof of (10). Suppose a =0 and I u I = 1. 
If uET(A, a) and e>0, then there exists a point bEA such that 

0 < I b I < e and | -u <, 
I bj 

hence 

I bl-l8(I b| u) ? I bKl1 I bl u-bl = bl 

On the other hand, suppose that whenever 0 < e < 1 there exists a number 
t such that 

0 < t <e and t-16(tu) < e; 

choosing bEA so that 8(tu) = I tu-b , one finds that 

|t- I b ||8 b(u) < E, 0 < (1-e)t < I b I < (1 + E)t < E + C2, 

b I |b- I b| ul < b-tul + It- |b| I 2Et 2= 

I b u I b b I (1-e)t 1-e 

Proof of (11). Suppose a=0, Iu| =1 and 

lim sup t-16(tu) > 0. 
9o11+ 
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Choose e and S so that 

O < e < reach(A, a)-r, SC {t:O < t <E}, 

O E Closure S, 6(tu) > te for t E S. 

If tES, then 

6(tu) < tu| = 1< E < reach(A, a), tu E U. 

For tES, O<p<r let 

1(t, p) = tu + p grad b(tu) = t(tu) + [8(tu) + p] grad b(tu) 

and observe that 

I (t, p) I 
< E+ r < reach(A, a), (t, p) E Int U. 

It follows from (6), with a and v replaced by t(tu) and grad 8(tu), that 

t[q(t, r)] = t(tu) whenever t E S. 

Inasmuch as { J(t, r): tES} is bounded, one may assume, after replacing S 
by a suitable subset, that there exists a point vEEn for which 

lim (t, r) = v. 

Then 

|v| = lim jn(t,r)| =r, V U, 

t(v) = lim t[X(t, r)] = a, 

and consequently, by hypothesis, u @v ?0. 
Choosing tES so that 

U 0 X(t, r) < Er, 

one may use the fact that 

to obtain 

[8Qtu) + r]2 < u tu + [I(t, r) -tu] 12, 

[8(tu)]2 + 2r8(tu) + r2 < t2 + 2tu * [b(t, r) -tu] + r2, 

2r8(tu) < t2 + 2tEr - 22 < 2tEr, 

hence 8(tu) <te, contrary to the choice of e and S. 
Proof of (12). Since {a+v: |v| <r}CU, the set 

S={Xv:X O0, Iv|= r, (a+v) = a} 

This content downloaded from 35.13.190.230 on Tue, 1 Apr 2014 14:03:45 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


440 HERBERT FEDERER [December 

is closed. Clearly S is positively homogeneous. In order to verify that S is 
additive, suppose 

X >0, vj = r, t(a + v) = a, , > 0, w r, t(a + w) =a, 

let 
Z = (X + )-(XV + Aw), 

and use (2) and (6) to infer that 

t(a + z) = a, t(a + r I z I-'z) = a, 
Xv + ,w = (I Xv + ,.w I r~')(r I z j-lz) E S. 

Thus S is a closed convex cone. 
Now let 

L = {u: lim t-15(a + tu) = 0} 

One sees from 4.5 that 

Tan(A, a) C Dual[Nor(A, a)], 

from (2) that 

S C Nor(A, a), hence Dual[Nor(A, a)] C Dual(S), 

and from (11) and (10) that 

Dual(S) C L C Tan(A, a). 

Accordingly 

Tan(A, a) = Dual[Nor(A, a)] = Dual(S) = L, Nor(A, a) = S. 

Proof of (13). One sees from (2) that if xCEE, aEA and (x)= Ix-aI, 
then 

x - a E Nor(A, a), (a, x - a) E N, oa(a, x - a) = x. 

In case xEU, then a=-(x), +t(x)=(a, x-a), a[4(x)]=x. This implies the 
first part of (13). The second part follows from (12), (2), and (8); in case K 
is compact, so are W, 4/(W) and the image of ,6(W) under the transformation 
mapping (a, v) onto (a, tr-lv). 

4.9. COROLLARY. If s > 0 and A8= {x: A (X) < S }, then 

BA.(X) = 5A(X) - S whenever BA(X) _ s, 

{A[tA.(X)] = {A(X) whenever 5A(X) < reach(A), 

reach(A8) _ reach(A) -s. 

Furthermore, if 0 <s <reach(A) and A,= {x: As(X)>S}, then 
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6A8(X) = S - 8A (X) whenever 0 < 8A (X) -< S, 

A [UA(X) ] = (A (X) whenever 0 < 8A (X) < S, 

reach(A') > s. 

Proof. The formula for 8A. follows mechanically from the definitions, and 
the formula for 8At may be derived with the aid of 4.8 (6). Then the state- 
ments concerning reach and t can be obtained from 4.8 (5) and (3), applied 
to A, A, and A,'. 

4.10. THEOREM. Suppose 

A antd B are closed subsets of En, 

C is a nonempty compact subset of A n B, r > 0, 

reach(A, c) > r and reach(B, c) > r for c E C, 

and there exist no c and v such that 

c E C, v E Nor(A, c), -v C Nor(B, c), v % 0. 

Let q be the infimum of the set consisting of 1 and the numbers 

I v + wI 

I VI + IWI 

corresponding to vENor(A, c),wCNor(B, c),cEC with lvI +|w! >0. Then: 
(1) 0<?<1 and there exists a r such that 0< ?r and 

I X grad 5A(X) + ,u grad &B(X) I > (-/2)(X + ,u) 

whenever xCEn- (AkUB), 5c(x) < , X>0, pL>0. 
(2) 5AnB(X) < (2/n7) [5A(X) +6B(X) ] whenever 5c(x) <nq/5. 
(3) If cCC, then 

Tan(A n B, c) = Tan(A, c) n Tan (B, c), 

Nor(A n B, c) = Nor(A, c) + Nor(B, c). 

(4) If cEAf)B, O<p?<r7/2 and 

AnB {z: Iz-cI < 2p} CC, 

then reach(A rlB, c) > p. 
(5) If C= AfnB, then reach(A nB) > rr7/2. 

Proof of (1). For O?e<r let 

S(E) = A G {a: 5c(a) < e, T(E) = B G {b: 5c(b) <?e, 

M(E) = { (a, v): a E S(E), v E Nor(A, a), v I <1 }, 

N(e) ={(b, w): b C T(E), w C Nor(B, b), w| < 1 }, 

P(E) = [M(E) X N(E)] n { ((a, v), (b, w)): a a-b I ?, l v I + |wi = 1} 

This content downloaded from 35.13.190.230 on Tue, 1 Apr 2014 14:03:45 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


442 HERBERT FEDERER [December 

observe that S(e) and T(e) are compact with 

reach(A, a) > r - e for a E S(e), 

reach(B, b) > r - e for b E T(E), 

and use 4.8 (13) to infer that M(e), N(e) and P(e) are compact. Furthermore 
let A be the function on P(r) such that 

A((a, v), (b, w)) = I v + w I for ((a, v), (b, w)) E P(r), 

and note that A is a continuous function, A does not vanish on P(O), and either 
P(O) is empty or r7 is the minimum value of A on P(O), hence O <- < 1. More- 
over, since 

P(O)= n P(>), 
O<E<r 

one may choose e so that 0 <e <r and the minimum value of A on P(e) ex- 
ceeds q/2. 

Let = e/2 and suppose 

x EnE - (A UB), ac(x) <, X>O, ,>O. 

Choosing a, b, v, w so that 

aEA, A5A(X) = I x-aI, bEB, 5B(X) = X-b|, 

(X + ,u)v = Xgrad5A(X), (X +,u)w = ,grad6B(X), 

one readily verifies with the help of 4.8 (2) that 

((a, v), (b, w)) E P(e), hence v + w| > i/2. 

Proof of (2). Letting 

[(6A) 2+ (SB) ]i"/2 

Q= {x: c(x) < .} - (A n B), 

one sees from 4.8 (5) that Jt is continuously differentiable on Q. Furthermore 

I grad A(x) I _ i/2 for x E Q. 

In fact, if xCQ-(AkUB), then 

grad i*(x) = [6A(X) grad AA(X) + 5B(X) grad 5B(X)]/ik(X), 

I grad At(x) I > (v/2) [6A(X) + 5B(X)]A&(X) _ ,1/2 

by virtue of (1); on the other hand 

grad A1(x) = grad B(X) for x E Q n A, 

grad A1(x) = grad 5A(X) for x E Q r) B, 

hence I grad y6 (x)| = 1 for x E QC(A UB). 
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Fix a point zeQ such that 5c(z) < 77/5 and consider the class of all maps 

q: J -+Q 

such that J is an open real interval containing 0, 

q(O) = z and q' = - (grad i) o q. 

Since this class is nonempty, according to Peano's existence theorem for solu- 
tions of differential equations, and is inductively ordered by extension, it 
has a maximal element. Henceforth let q: J->Q be such a maximal element. 

If t J, then q'(t) -grad 1 [q (t) ], hence 

q'(t)j i 2 /2, (iIoq)'(t) = grad 0 [q(t)] 0 q'(t)= - |q'(t) . 

It follows that if 0 <uEJ, then 

jP(z) = O[q(O)] >- 0[q(O)] - O[q(u)] 
u pu 

Cos l T L 
I q'(t) 

I2dt 

_ (1//2) 

f 
q'(t) I dt > 

u.2/4. 

Consequently r = sup J < oo and there exists a point hE,, such that 

lim q(t) = h, 

T-T 

I h - zI < f I q'(t) Id = (2/t/)o(z) < (2/r7) [5A(Z) + 5B(Z)]. 

The proof will be completed by showing that hkAnB. Otherwise, since 

5c(h)< I h -z I + 5c(z) < [(4/nI) + 1]5c(z) < ?, 

it would be true that hEQ, and Peano's existence theorem would furnish an 
e>0 and a map 

p: {: 7t - e < t < r + e4 Q 

for which p(r) = h and p' =- (grad '1) o p. Inasmuch as 

lim q'(t) = lim - grad O[q(t)] =-grad j(h) = p'(r), 

the map 

P: J U { t: r < t < r + e4 >Q, 

P(t) = q(t) for t C J, P(t) = p(t) for r < t < r + e, 

would be a proper extension of q: J->Q with 

P(O) = z and P' =-(grad J) o P, 

contrary to the maximal property of q. 
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Proof of (3). Inasmuch as 

AfnB (X) _ SA(X) and AfnB (X) _ SB (X) for x C E., 

threefold application of 4.8 (10) yields 

Tan(A n B, c) C Tan(A, c) n Tan(B, c). 

On the other hand, if uGTan(A, c)6Tan(B, c), one infers from 4.8 (12) that 

lim t-'A4(C + tu)= 0 and lim t-I'B(C + tu) = 0, 
t >0+ t-40+ 

hence from (2) and 4.8 (10) that 

lim t-'5AnB(c + tu) = 0, u E Tan(A 6\ B, c). 

This proves the first equation in (3), and the second now follows from 4.5 and 
4.8 (12). 

Proof of (4). Suppose I x-c| <p, zCAnB, 6AnB(X) = I X-z|. 

One sees from 4.8 (2) that x-zC-Nor(ACnB, z). Inasmuch as 

Iz - c| < I z - xI + I x - c I< ?AnB(X) + I x - cI _ 21 x - c| < 2p, 

hence zC C, it follows from (3) that there exist v and w with 

v C Nor(A, z), w C Nor(B, z), v + w = x-z. 

Now n7(l vl + I wl ) < I v+wl = I x-zl <p<rr7/2, hence 

I 2v| < r and I 2w| < r. 

Since reach(A, z) > r and reach(B, z) > r, one infers from 4.8 (12) that 

tA(Z + 2v) = z and tB(Z+ 2w) = z. 

Recalling that zEEAnB one obtains 

A nB (Z + 2v) = z and tA nB(Z + 2w) = z, 

and one concludes from 4.8 (2) that 

Z = tAnB[Z + (2v + 2w)/2] = tAnB(X) 

Proof of (5). Applying (4) to all cC C with p = rr7/2. 

4.11. LEMMA. Supposef is a continuously differentiable real valued function 
on an open subset of En, gradf is Lipschitzian, and 

A = {x:f(x) = O}, B = {x:f(x) < O}. 

If aEA and grad f(a)O 0, then 0 <reach(A, a) < reach(B, a). 

Proof. Let M be a Lipschitzian constant for gradf, and choose positive 
numbers h and r such that 
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I gradf(w) I _ h whenever |w - aj < r. 

It will be shown that reach(A, a)>s=inf{r/2, h/M}. 
Suppose l x-al <s, bEA, cCA, I b-xI =c-x I=A(x). Then lb-al <r, 

Ic-al <r and Taylor's Theorem implies that 

1 f(c) -f(b) - (c - b) 0 grad f(b) I < I c-b I 2M/2. 

Furthermore f(c) =f(b) = 0, and since x-b C Nor(A, b) according to 4.8 (2) 
there exists a real number t such that 

x - b = tgradf(b). 

It follows that 

I 2(c -b) * (b -x) I| I c s- b 2M| t | 
0 = c - x12 - lb - x2 = c - b12 + 2(c - b) O (b - x) 

> I c - b2(1- MI tl ) 

hIM > x-b = I t* I gradf(b) I > I t I) 1 > MI| t|, 

hence Ic-bI2=0. 

4.12. THEOREM. Suppose fi, * , fm are continuously differentiable real 
valued functions on an open subset of E, grad fl, . ,grad f. are Lipschitzian, 
0_k<m, and 

k m 

A = n {x:fi(x) = O} n n {x:fi(x) ? O}. 
i=1 i=k+l 

If a GA, J= {i: fi(a) =0}, and there do not exist real numbers ti, corresponding 
to iC J, such that ti 5zO for some ie J, tiO> whenever ie J and i>k, 

E ti grad fi(a) = 0, 
iEJ 

then reach (A, a) > 0 and 

Nor(A, a) = { j ti gradfi(a): ti > 0 whenever i > k}. 

Proof. Using 4.11 and 4.10, apply induction with respect to m. 

4.13. THEOREM. Suppose e>o. If A1, A2, A3, * * * and B are closed subsets 
of En such that reach(Ak)>e for k=1, 2, 3, * * * and 

5Ak(X) -) 5B(X) uniformly for x E C as k -oo 

whenever C is a compact subset of { x: 5B(X) <e } then reach(B) > E and 

(Ak(X) -> - B(X) uniformly for x E C as k - oo 

whenever C is a compact subset of {x: 5B(X) <e }. 
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Proof. Suppose C is a compact subset of {x: 5B(X) <el}. Choose an open 
set W such that CC W and the closure of W is a compact subset of 

Ix: 5B(X) <e}, a number r such that 

sup {SB(x):xC W} <r<e, 

and a positive integer K such that 

SUp {I Ak(X): X C W} < r for k ? K. 

It follows from 4.8 (8) that the functions (AkI W corresponding to k >-K have 
the common Lipschitz constant e/(e-r), and hence from 4.8 (5) that the 
functions (SAk)2 are equiuniformly differentiable on W. Since 

5Ak(x) -> 3B(x) uniformly for x E W as k , co, 

one infers that (5B)2 is uniformly differentiable on W and 

grad SAk(x) -> grad &B(x) uniformly for x C W as k -> oo. 

Finally one uses 4.8 (3) and (5) to conclude that WCUnp(B) and 

tAk(x) -> tB(X) uniformly for x E W as k - oo. 

4.14. REMARK. Observing that if A and B are nonempty closed subsets of 
Ens then 

sup I SA (X) - 8B (X)| 
xGE En 

equals the Hausdorff distance between A and B, one sees from 4.13 that for 
each e >0 the set 

{A: 0 - A C En and reach(A) _ e} 

is closed with respect to the Hausdorff metric. It follows that if E>0 and K 
is a compact subset of En, then 

{ A: 0 - A C K and reach(A) ? 4 

is compact. 
4.15. REMARK. The reasonable local behavior of a subset A of En, such 

that reach(A) >0, is further illustrated by the following properties: 
(1) If pEEn and 0< r <reach(A), then 

A ( {x: I x -p I < r is contractible. 

(2) If aCA, dim Tan(A, a) =k and 

P(r) = A n {x: t x-al ?< r, Q(r) = Tan (A, a) nf {u: I uI < r 

whenever r > 0, then dim (A) _ k and 
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Hk [P(r) ] 

r 

F,o 

+Hk[Q(r)] 
(3) Fork i * * * ,nthe set 

A(k) = A ( {a: dim Nor(A, a) > n - k} 

is countably k rectifiable. 
(4) If dim(A) =k, then A =A (k) #A (k-i) and,for aEA -A (k-1) Tan(A, a) 

is a k dimensional vectorspace. 
To prove (1), consider the homotopy h such that 

h(x, t) = -A [(I-t)X + tp] 

whenever xCA, |x-pj |_r, O<t< 1. 
To prove (2), assume a=0, let U be the k dimensional vectorspace con- 

taining Tan (A, a), and consider the continuous maps 

ft: Q(1) -> U, ft(U) = t 1(QU a A)(tU) for u E Q(1), 

corresponding to 0 <t <reach(A). Inasmuch as 

I fs(X) - UI |= ''1 l {U[tA(tU) - tU] I 

? -'l | A(tU) - tUl = t1- A(tU) 

for uCQ(1), and since one easily sees from 4.8 (12) that t'15A(tU)->0 uni- 
formly for uCQ(1) as t->O+, it follows that as t->O+ the maps fg converge 
to the inclusion map of Q(1) into U, whence dim(A) _ k. 

Given any e such that 0<e<1, one may choose p>0 so that if O<t<p 
then 

t-1A(tU) < e for u C Q(1), 

Hk(ft[Q(1)]) > (1 - E)Hk[Q(1)]. 

One concludes that if 0<r<p and t=r(1+e)-', then 

{A[Q(t)] C P(r), 

ift[Q(1)] = (tuo A)[Q(Q)] C u[P(r)], 
Hk[P(r)] > tkHk(ft[Q(1)]) > (1 + E) krk(l - E) Hk[Q(1)] 

(1 + E)-k(1 - E)Hk[Q(r)]. 

To prove (3), let S be a countable dense set of k dimensional planes in 
E, , suppose 0 < r < reach (A), observe that 

A(k) C U {A [ X {X:&A(X) < r], 
oES 

and recall 4.8 (8). 
To prove (4), first use (2) to infer that if aGA, then 
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dim Tan(A, a) < dim(A) < k, hence a E A(k); 

in case a A(kl), then 
dim Nor(A, a) = n - k, dim Tan(A, a) k, 

dim Nor(A, a) + dim Tan(A, a) = n, 

hence Tan(A, a) is a k dimensional vectorspace. On the other hand (3) implies 
that Hk[A(k-1) -0, hence dimA (k-1) <k-1 according to [HW, VII], and 
consequently A ?A (k-I)A 

4.16. LEMMA. For every nonempty closed subset S of En, 

[6S(x)]2 + [SDual(S) (X)]2 > 1 2 whenever x C En; 

furthermore S is a convex cone if and only if 

[Ss(X)]2 + [3Dua1(S)(X)]2 = I XI' whenever x C En. 

Proof. IfxCEnzuES, SS(X) = ix-ul ,theneither x-uI _ x| orx@u>o, 

Dual(S) C Dual({u}) = {v: v 0 u ? 0}, 

D,ua1(S)(X) > 8Dual({u])(X) = (X 0 U)/ I 1 
[6S(X)]2 + [6Dual(S)(X)]2 I> X - U 12 + [(X 0 U)/ I U | ]2 

X I12 +[ IU I - (X 0U)/IU 1]2 > I X12; 

in case S is a convex cone it is also true that 

S C Tan(S, u), x - u C Nor(S, u) C Dual(S), 

{u,-u} CTan(S,u), (x-u)Ou=O, 

I1 I X - U12 + I X - (X - U) 12 ? [&s(x)12 + [8Dual(S)(X) 12 

and consequently the equation of the lemma holds. 
To prove the converse, suppose S is a closed set such that the equation 

holds whenever xCEn. Since the equation also holds with S replaced by 
Dual(S), one finds that 

SS(x) =Dual[Dual(S)](X) whenever x E En) 

hence S= Dual [Dual(S) ]. 

4.17. LEMMA. If A is a closed subset of En, <t < oo, r > 0 and 

5Tan(A,a)(b - a) < I b - a 12/(21) 

whenever a, bEA with 1a-b1 <2r, then reach(A)?> inf{r, t}. 

Proof. Suppose 8A (X) <inf I r, t }, aCA, b CA, 

&A(X) =I X-al = I x-b- , 

and assume a=0. Then 1 b1 ? I b-x1 + I x| <2r, 
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x C Nor(A, a), Tan (A, a) C Dual({x}) = {v: v 0 x ? O}, 
x 

b 0 ~ -< aDual ({x})(b) < 3Tan (A ,a)(b) < b 2/21, 

lx! 
0 = |b - xl2 - I x12 = 12 - 2b 0 x I b12(1 - I x| /1) > 0 

unless b=0. 

4.18. THEOREM. If A is a closed subset of E. and 0 <t < oo, then the follow- 
ing two conditions are equivalent: 

(1) reach(A) _ t. 
(2) aTan(A a)(b-a) < I b-al 2/(2t) whenever a, bCA. 

A ccordingly 

reach(A)-' = sup {2 b - a 1-25Tan(A,a)(b - a): a E A, b C A, a 5 bi, 

where 0-1= oo and oo-0=0. 

Proof. Applying 4.17 with r= 0o one finds that (2) implies (1). 
Now assume (1) and suppose a=OCA, bCA. If vENor(A, a), then 

v * (-b) _ - |b121 v| /2t 

according to 4.8 (12) and (7), hence 

b - v12 = b12 + I v12 - 2b 0 v _ I b12 + I vl2- - bl2l vI /t 
> lb12 - lb 14/ (412) 

Consequently 

[SNor(A,a)(b)]2 _ | b12- I b 14/(4t2) 

and it follows from 4.8 (12) and 4.16 that [8Tan(A,a)(b)]2 < bj 4/(4t2). 

4.19. THEOREM. If A CE., reach(A) > t > 0, s > 0 and 

f: {x: SA(X) < s} Em 

is a univalent continuously differentiable map such that f, f'l, Df are Lipschitzian 
with Lipschitz constants M, N, P, then 

reach[f(A)] ? inf {sN-1, (Mt1- + P)-1N-2}. 

Proof. Suppose a CA, b CA and lf(b) -f(a) I < 2sN-]. 
Applying 4.18 choose uCTan(A, a) so that 

l b-a-nI _ | b-al2/(2t). 

Then Df(a) (u) CTan [f(A), f(a) ] and 

I Df(a) (b - a) - Df(a) (u) I < MI b -a 12/(21). 

Furthermore l b-al <2s, 3A[Xaa+(1-X)b]<s for 0?<X1 , hence Taylor's 
Theorem implies that 
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f(b) -f(a) - Df(a)(b - a) I < P b - a 12/2. 

Accordingly 

aTan f (A),f (a)] [f(b) -f(a) ] < (Ml-1 + P) |b - a| 2/2 

=< (Mi-1 + P) N 2 |f (b) - f(a) | 2/2. 

Use of 4.17 completes the proof. 
4.20. REMARK. It may be shown that under the conditions of 4.15 (4) the 

set A (k-i) is closed and the set A -A (k-1) is a k dimensional manifold locally 
definable by equations fi(x) = 0, * * * ,fn(x)- =0, where fi, * * * , fn- are real 
valued continuously differentiable functions with linearly independent 
Lipschitzian gradients. 

A related proposition states that a Lipschitzian map g: Em>En has a 
Lipschitzian differential if and only if the subset g of EmXEn has positive 
reach. 

Among those subsets A of En for which reach(A) >0 the k dimensional 
manifolds may be characterized by the property that Tan(A, a) is a k dimen- 
sional vectorspace for each aCA. 

If t>0, then the class of all k dimensional submanifolds A of En for which 
reach (A) > t is closed relative to the Hausdorff metric; likewise closed is the 
class of all subsets A of En such that reach(A) _t, dim(A) ?k and A is not a 
k dimensional manifold. 

4.21. REMARK. Suppose m_n, X is an open subset of Em, f: X->En is a 
continuously differentiable map, f and Df are Lipschitzian with Lipschitz 
constants M and P, and 

Q=inf{Jf(x):xEX} >0. 

If A CEn, reach (A) > t > 0, r > 0 and 

Em. r I x: rifI(A)(x) < r} C X, 

then 

reachf-1(A)] > inf{ r, QM1-n(M2t-1 + p)-1}. 

5. The curvature measures. In this section several versions of Steiner's 
formula are derived by a modification of the classical method of [W]; the 
main innovation is the use of the algebra A**(E). By means of Steiner's 
formula the curvature measures corresponding to a set with positive reach 
are defined, and their basic properties are established. The proofs of the 
cartesian product formula and of the generalized Gauss-Bonnet Theorem were 
partly suggested by [H, 6.1.9] and by [A; FE1]. 

5.1. LEMMA. If h: En->E, is Lipschitzian, VCEn, h| V is univalent, 
(hI V)-1 is Lipschitzian, aE V, En-V has Ln density 0 at a, and h is differenti- 
able at a, then Jh(a) > 0. 
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Proof. Let M be a Lipschitz constant for h. Suppose a= 0, 

u C kernel Dh(a), l ul = 1, 0 < E < 1, 

and choose r>O so that lh(ru)-h(a)l <er and 

Ln({x: I xI < r + Er} - V) < a (n)Enrn. 

Then there exists a point v E V for which v - ru| < er, hence 

|h(v)-h(a) | I h(v)-h(ru) I + I h(ru)- h(a) I _ MEr + Er, 

lh(v)-h(a)l MEr + Er (M + 1)e 

I v-al = r-Er l-E 

In view of the arbitrary nature of E, this conflicts with the assumption that 
(hi V)-1 is Lipschitzian. 

5.2. LEMMA. Suppose: 
(1) P is a k dimensional Riemannian manifold of class 1. 
(2) 61, . . *, Ok are continuous differential 1 forms of P. 
(3) el, . , ek, fit . . . fn-k g are Lipschitzian maps of P into En. 
(4) For pEP, r, is the tangent space of P at p. 
(5) C is a closed subset of En. 

(6) Q is a bounded Borel subset of P, g(Q) C C, g I Q is univalent, (g Q)> 
is Lipschitzian. 

(7) If peQ,then 

(01 I r), * , (Ok | 7) are orthonormal, 

e(p) ,.. *, ek (p), fl (p), , fn-k(p) are orthonormal, 
{ n-k 

Nor[C, g(p)] C z,fj(p) z G En-k} 

j=1 

{ ~~~~~~~n-k \ 

S(p) = En-k n {Z: | Z j = 1 and E zjfj(p) C Nor[C, g(p)]}. 
j=1 

(8) If p EQ and g, fi, * fn-k are differentiable at p, then 
k k 

A [(dg I r,) 0 ej(p)] is a positive multiple of A (0i I r,), 
i=l t=1 

k 

G(p) = E [(dg |T) 0 ei(p)] (Oi |r7) c A (rp), 
i=l 

k 

F,(p) = , [(dfj | rp) 0 ei(p)] 0 (Oi I rp) c A11(rp) forj = 1, , n - k, 
i=l 

m n-k m f 

Um (P) = m!-J E zjFj(p) dHn-k-lZ c A,,n-"(-p) form = 0, 1, .. * * k. 
Stp) j=l 
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(9) 0 <r <reach [C, g(p) ] whenever p EQ. 
Under these conditions the following formula holds: 

Ln({x: bc(x) < r and (c(x) E g(Q)}) 
k 

=- rn-k+m(n - k + m)-1 trace[(k - m) !-G(p)k-mum(p) ]dHkp. 
mn=OQ 

Proof. Let h: P XEn-k-*En 
n-k 

h(p, z) = g(p) + E z,fj(p) for (p, z) E P X En-k, 
j=1 

z ~~~~~~n-k 
V = (P X En-k) { (pZ): P E Q, I ZI < r, Z zjfj(p) E Nor[C, g(p)]}, 

W = { x: bc(x) < r, (c(x) E g(Q) }, 

and note that h is Lipschitzian. Using 4.8 (13) with A = C and K=g(Q), one 
also sees that h( V) = W, h I V is univalent and (h I V)- is Lipschitzian. Further 
let 

Y: P X En-k ->P Y(p, z) = p for (p, z) E P X En-k, 

and let Zi, * , Zn-k be the real valued functions on PXEn-k such that 

Zj(p, z) = zj for (p, z) E P X En-k, j = 1,** *n-k. 

Accordingly 
n-k 

h = (go Y) + > Zj (fjo Y). 
j=1 

If (p, z)eQXEn-k and T is the tangentspace of PXEn-k at (p, z), then 
d Y maps T onto rT, inducing 

Y*: A *(rT) A* 

and the linear functions 

Y*(61| , Y*(Ok | rp), dZ, j T, , 
dZn-k j T 

form an orthogonal basis of Al (T). If g, fl, , nk are differentiable at p, 
then h is differentiable at (p, z), 

- ~~~~~n-k 
(dh T T) * ei(p) = Y* (dg I ri,) 0 ei(p) + , zj(dfj I Trv) 0 ei(p) 

j=1 

fori=1, , k and 
(d-j 7) f)=d T?Y d )f + fI f)n-k 

(dh|I T) * f, (p) = (dZ, I T) + Y* (dg I Tp) *f(p) + ,: zj (dfj I Tv) I f,(p)2 
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for s = 1, , n-k, hence 
k n-k 

A [(dh I T) * ei(p)]A A [(dhl T) * fs(p)] 
i=1s= 

k -n-k \ n-k 

= Y* A (dgl 7rp) * ei(p) + zj(dfj rp) 0 ei(p) )A A (dZsI T) 
t=1 ,^~~~~~=1 = 

k k k\ n-k 

= trace (k!-' G(p) + E zjFj(p) ) A (Oi I rp) A A (dZ8 I T), 

and therefore 

Jk(p, z) trace (k!-' [G(p) + E zjFj(p)] ) 

Now consider the case in which (p, z) C V and (P X Enk) -V has density 0 at 
(p, z). It follows that if 0 < _ 1?, then (p, tz) C V and (PXEn_k) - V has den- 
sity 0 at (p, tz). Accordingly Lemma 5.1 implies that 

0 < Jh(p, tz) = trace (k t' [G(p) + E tzjFj(p)]) 

for 0 <t < 1. Since the quantity inside the absolute value signs depends con- 
tinuously on t, and is positive for t = 0 by virtue of (8), this quantity is posi- 
tive for 0_t_1. One infers that in the formula for Jh(p, z) the absolute 
value signs may be omitted, for Hn almost all (p, z) in V. 

Using standard integral formulae and the binomial theorem one finally 
computes 

r Ln(W) = JkJ(p, z)dIJ8(p, z) 

= 'Q f' f' Jk(p, z)dHn-k-lzdtdHkp 
Q S (p) 

r r = j- ,J ptn-k-f1 Jh(p, iz)dHn-k-lzdtdHkp 
Q O S~~~(p) 

r r/ F n-k kc 

tn-k1 f trace kk!- [G(p) + E tzjFj(p) dHn-kI-lzdtdHkp 
Q(p) j=l 

= trace t n-k-1 tm(k - m) !-1G(p)k-m 
(p) m=o 

n-k m 
mr!-n [: zjFj(p) dHn-k-lzdt) dHkp 

_k 

-E rn-k+tn(n - k + m)-f J trace[(k -m) !-1G(p)k-mum(p)]dHkp 
m=o Q 
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5.3. COROLLARY. Suppose 
(1) P is a k dimensional submanifold of class 1 of En. 
(2) fi, * * * fn-k are Lipschitzian maps of P into En. 
(3) If pEP, then fi(p), * * *, f-k (p) form an orthonormal base of Nor(P, p). 
(4) If pEP, then rp is the (intrinsic) tangent space of P at p. 
(5) If pEP andfj is differentiable at p, then Fj(p) GA '1(rp) and the bilinear 

form corresponding to Fj(p) is the second fundamental form of P at p associated 
with the normal vectorfield fj [mapping (u, v) ErpXr1p onto dfj(u) 0 dg(v), where 
g: P->En by inclusion]. 

(6) C is a closed subset of En, PC C. 
(7) If pCP, then 

f ~~~~n-kX 
S(p) = Enk n Z{:IZI = 1 and , zjfj(p) E Nor(C, p)}. 

j=l 

(8) If peP and fi, *. , fn- are differentiable at p, then 

um(P) = m!- zjFj(p)] dHn-k-lz C Am 
s(p) j=l 

for m=O, 1, * , k. 
(9) Q is a bounded Borel subset of P. 
(10) 0<r<reach(C, p) whenever p(Q. 

Under these conditions the following formula holds: 

Ln({x: BC(X) ? r and {c(x) C Q}) 
k 

= r n-k+n(- k + m)- ftrace[um(p)]dHkp. 
mOQ 

Proof. Since both members of the preceding equation are countably addi- 
tive with respect to Q, the problem is local and one may assume, in view of 
(2) and (3), that there exist Lipschitzian maps el, . . *, ek of P into En such 
that if pEP, then ei(p), * * *, ek(p) form an orthonormal base for Tan(P, p). 
Letting 01, . . *, ok be the 1-forms of P such that 

OiI rp = (dg| rp) 0 ei(p) for p E P, i = 1, k, 

one readily verifies that Lemma 5.2 is applicable; the factor (k - m) !-G(p)k-m 
may now be omitted because the bilinear form corresponding to G(p) is now 
the first fundamental form of P [mapping (u, v) GerXTp onto dg(u) *dg(v)]. 

5.4. DEFINITION. Suppose A C En and O<8A(P) < reach(A). Then 
P = { x: 8A (x) = 8A (p))} is an n-1 dimensional submanifold of class 1 of Ent 
with the Lipschitzian unit normal vectorfield (grad 8A) j P, according to 4.8 
(5) and (3). If rp is the tangentspace of P at p and (grad 8A) i P is differentiable 
at p, then 

VA(p) E Al 1(rp) 
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is defined by the following condition: The bilinear form corresponding to 
gA(P) is the second fundamental form of P at p associated with (grad 8A)| P. 

5.5. THEOREM. If A CEn, O <s <reach(A) and 

A8 = {x:&A(X) < s}, As = {X: A(X) _ s}, P8 = {x: BA(X) = sI, 

then the following three statements hold: 
(1) If 0 <r <reach(A) -s and Q is a bounded Borel subset of Ps, then 

Ln({x: BA.(X) < r and tA.(X) E Q}) 
n-1 

= E rm+r(m + 1)!1 trace[IA (p)m]dHn-lp 
m0Q 

(2) If 0? r <s and Q is a bounded Borel subset of Ps, then 

Ln({ X: BA'(X) < r and UA,(X) E Q}) 

n-1 

= E 1r/+'(m + 1)!-'(-1)m trace[-(p)m]dHn-1p. 

(3) If 0? r <s and K is a bounded Borel subset of En, then 

Ln({x: 6A(X) ? r and tA(X) G K}) LnA8 nC {A(K)] 

n-i 

+ E (r - s)m+l(m + trace[:A(p)m]dHn-1p 
m== OntA t) 

Proof of (1). Apply 5.3 with 

P = P8, k = n- 1, fi = (grad PA) ,Pi, F, = -A |Pet C= Ae, 
S(p) = {1i, um(p) = m! 1[:A(p)]i. 

Proof of (2). Apply 5.3 with 

Pi, k = n- 1, fl = (grad SA)| Pi, F = A |P8, c= A: 

S(p) = {-1}, um(p) = m [-1 A(p)] 

Proof of (3). Observe that 

Ln[Ar r\ 1A'(K)] = Ln[As r\ $A (K)] -Ln[(As- Ar) n C\ 
(K)], 

use 4.9 to verify that 

{x: r < 5A(X) < s and tA(x) C K} 

= { Ax:AA(X) < s - r and tA (x) C P. n C A (K)} 

and apply (2) with r replaced by s - r. 

5.6. THEOREM. If A CEn and reach(A) >0, then there exist unique Radon 
measures 41 o, 1i, * * *, 4n over En such that, for 0 <r <reach(A), 

This content downloaded from 35.13.190.230 on Tue, 1 Apr 2014 14:03:45 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


456 HERBERT FEDERER [December 

n 
L. ({x:6A(x) < r and {A(X) E K}) = E rn-ia(n- 

i=O 

whenever K is a Borel subset of En, and consequently 

n 
(fo 0A)dLn = E rn ia(n - i) fdiVi 

[X: 6A (X) r) i=o 

whenever f is a bounded real valued Baire function on En with bounded support. 

Proof. Clearly '1o, * * *, I4/ are uniquely determined as soon as the above 
equations hold for n+1 numbers r. On the other hand, if 0 <s <reach(A), 
then measures 4{i suitable for 0 < r < s may be defined by letting a(n - i)41i(K) 
be the coefficient of rn-i in 5.5 (3). 

5.7. DEFINITION. If A CEn and reach(A) > 0, then the Radon measures 
ko, 41i, . . I, An described in Theorem 5.6 are the curvature measures associated 
with A. Clearly the supports of these measures are contained in A. 

Whenever f0o(A), '1 (A), * *, t'Vn (A) are meaningful, for instance in case 
A is compact, these numbers are the total curvatures of A. 

Hereafter the dependence on A will be made explicit by writing 

bi(A, K) for /'i(K), 4bi(A) = 'bi(A, A) for /'i(A), 

'i(A,f) =f fd4i(A, *) for ffdqvi 

whenever K is a Borel subset of En and f is a Baire function on En; further- 
more (PiI (A, K) will be the total variation of bi(A, -) over K, and I(iI (A) 

( Pi (A, A). 
5.8. REMARK. If A CEn, reach(A) > 0 and K is a bounded Borel subset of 

Ens then 

M(A, K) = Ln(A nK), bi(A K) = b(A Kr Bdry A) for i < n. 

The first equation is evident from 5.6, the second from 5.5 (3). 
It is clear that if M is a rigid motion of En, then 

Di[M(A), f] = (D(A I f o M) 

for i = 0, * , n and every Baire function f. 
If the conditions of 5.5 hold, then 

)i (A8 ,f) = a(n - i)-1(n - i) h1 f(p) trace[ :A(p)n-i-1]dHn-1p 

whenever i =0, , n -1 and f is a bounded Baire function on En with 
compact support. Also, in case A is compact, 

n ~~a(n -j) 
(Di (A,)= E ( I)si-i a(-) ) for i = 0, . , n, 

j=o n- a(n-t 
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because if O?< r < s-reach (A), then 

n 
rn-ia(n -i)bi(A) = Ln({x: A (X) ? r}) 

i=O n 
= Ln({x: 6A(X) ? r + s}) = E (r + s)n-ia(n - j)4ij(A). 

j=o 

5.9. THEOREM. Suppose E>0. If A1, A2, A3, * * and B are closed subsets 
of En such that reach(Ak)> E for k = 1, 2, 3, * * * and 

6Ak(X) -* 6B(X) uniformly for x E C as k - 

whenever C is a compact subset of En, then reach(B) > - and for i = 0, 1, , n 
the sequence of Radon measures 

,ci(A 1, *y 4),j(A 2, * ), i(A 3, ') ), 

converges weakly to the Radon measure Ib(B, *). 

Proof. Recalling 4.13, supposef is a continuous real valued function on E. 
with compact support S, and O<r<E, r7>O. 

Let M= sup I If(x) : xES }, C= x: bs(x) _ r }, choose a number ? such 
that 0<?<e-r and 

L,[s 1(C) 0 tx: r - < 6B(X) < r + P}]< 11My 

let D = CC {x: 8B(X) <r+?}, and choose a positive integer K such that if 
k K, then 

I SAJkX) - SB(X) |I< t f or x Ez C, |A Ak(X) - (B (X) |I< r f or x E- D. 

Let E== {X: 8B(X)<r}, Fk== {X: 8Ak(X)_ r }, and note that Er' 1 (S) CC. If 
k>K, then 

Ek r) (Ak(S) = C rl Fk rl .Ak(S) C D r -Ak(S) C 

C f Er) CiA (S) C D r) (2(S) C (B (C), 

C n [(Fk - E) U (E - Fk)] C {x: r - < B(X) < r +}, 

Ln(Ak(S) r [(Fk- C r E) U (C r E- Fk)]) < rl/M, 

(f ? (Ak)dLn - 
f 0 

(J Ak)dLn |< 77. 

Since tAk(x)--B(x) uniformly for xC-CnE, one finds by first letting ko-> 
and then letting 77--O+ that 

lim (fo 0*Ak)dLn =(f o B)dLn (f 0 (B)dL,. 
k d cok nnEt 

and consequently 
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n n 
imrn E n-ia(n - i)'i(Ak,f) = E rn-ia(n - i)Di(B,f). 

kt-too0 i-=O i=O 

Inasmuch as this equation holds for n+1 values of r, it follows that 

lim bi(Ak, f) = 4'i(B, f) for i0, 1, * * *, n. 

5.10. REMARK. One sees from 5.9 and 4.14 that if E>0 and i=0, * ,n 

then the function on 

{A: 0 $ A C En and reach(A) > e} 

mapping A onto 4i(A, *) is continuous, with respect to the topologies of the 
Hausdorff metric and of weak convergence. While the function mapping A 
onto I(iI (A, *) is not continuous, it is true that if K is a compact subset of 
En' then 

sup {I 4iI (A): A C K and reach(A) a 4l < ?? 

because weak convergence of measures implies boundedness of their total 
variations. 

If A CEn reach(A) > 0 and A8= {x: 6A (X) ? S } for s > 0, then 4i?(A8, *) 
converges weakly to 4i(A, *) as s->0+. Moreover, if K is a compact subset of 
En and 0< t <reach(A), then 

supi j 4(iI (A8, K): 0 < s ? t} < oo. 

5.11. LEMMA. In addition to the hypotheses of 5.2 suppose: 
(10) k=n-2. 
(11) ,u and v are Lipschitzian maps of P into En. 
(12) If peP, then 4.(p) and v (p) are linearly independent unit vectors and 

= /(p) + v(p) i(p) -v(p) 

If(p)+v(p)I 2~() 1,4P 
= (p) -+ V (p) 1 ', 

f2P (p) _ V(p) 

(13) If pCQ, then Nor [C, g(p)] is the closed convex cone generated by 
,u(p) and v(p). 

(14) If pGP and , v are differentiable at p, then 
n-2 

M(p) = ? [(dA | rp) 0 ei(p)] 0 (O| rp) E Al I(rp) 
4=1 

n-2 

N(p) = z [(dp | rp) * es(p)] 0 (Oi| rp) E Al,1(rp). 
i=l 

(15) If a>O, b>O, m=O, , n-2 and j=O, , m, then 

a(a, b) = E2fnl {z: IZ = 1 and zil/a> Z2/bl}1 

Am,(a, b) = [(m -j) ?]-1 ( - )dH'z. 
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Under these conditions the following three statements hold: 
For each pCQ where u and v are differentiable, and for m=O, , n-2, 

m 
Um(p) = Am,j[ | l(p) + V(p) I I |,U(p) - V(p) I ]M(p)m-iN(p)i. 

j==O 

For i =O, , n-2, 

4J?[C, g(Q)] = a(n - i)- (n-i)' trace[i!-1G(p)iu,-2-i(p)]dHn-2p. 

For i=n-1 and n, (i [C, g(Q)]=O. 

Proof. First suppose pCQ, a 1, (p) +v(p) | b= | (p) -)V(p)! . Note that 
if zCE2, then 

z1fl(p) + Z2f2(P) = + b (p) + ( - 1 v(P) 

and that zeS(p) if and only if z =1 and the above coefficients of ,u(p) and 
v(p) are non-negative. Accordingly S(p) =a(a, b). In case ,u and v are differ- 
entiable at p, one also finds that 

Fj(p) [M(p) + N(p)]/a, F2(p) [M(p) - N(p)]/b 

and consequently 

ziF,(p) + z2F2(p) = + M(p) + ( - N(p) 

whenever zeE2. Therefore the first statement follows from 5.2 (8) and the 
binomial theorem. 

The second and third statements may be obtained from the conclusion of 
5.2 by computing the coefficient of r 

5.12. COROLLARY. Suppose: 
(1) Q is an n - 2 rectifiable Borel subset of En. 
(2) g, ,u, v are Lipschitzian maps of Q into En, g is univalent, g-1 is Lip- 

schitzian. 
(3) g(Q) C C CEn reach(C) > 0. 
(4) If pGQ, then ,u(p) and v(p) are linearly independent unit vectors and 

Nor [C, g(p) ] is the closed convex cone generated by ,u(p) and v(p). 
(5) 7q is a common Lipschitzian constant for g, ,u, v. 
(6) For i=O, , n-2 

d= a(n - i)-'(n - i) ( ) 2n-2-i(n - 2)n 2i,n-2. 

Under these conditions it is true that 
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I I [C, g(Q) ] ? dif [A | ,(P) + p(p) K-1 + I A(p) - p(p) I-1]n-2-idHn-2p 

for i=O, *,n-2, and |"bil [C, g(Q)]=Ofor i=n-1, n. 

Proof. In view of a standard decomposition one need only consider the 
case in which Hn-2(Q) =0 and the case in which Q is contained in an n -2 
dimensional submanifold P of class 1 of En. 

In the first case Hn(Q XE2) =0, according to [F6, 4.2], and the Lipschitz- 
ian function s1, such that 

#(p, W) = g(p) + W1A(P) + W2v(P) for (p, w) E Q X E2, 

maps Q X E2 onto a set whose Ln measure is zero and which contains 
{x: .c(x) Eg(Q) }. Therefore I (i I [C, g(Q) ] = 0 for i = 0, 1, , n. 

In the second case Lemma 5.11 is applicable, with 

Ar,j(a, b) < [(mr-j) !j!]-(a- + b-l)m7r, 

Al M(p) |< (n-2)r,2 | N (p) I < (n-2)r7, | G (p) |< (n -2)r1 

i < ---G(p)iUn2-i(p) | <( [(n-2)r7]i [( |p) + v(p) I-i 
t ~~~~j=0 

+ 
I 

(p)-V(p) 1-l]n-2-i7r ( i [( 2),X]n-2-i 

= ( [(n - 2)7,] n-27r2n-2-i[ | #,(p) + p(p) I + I (p) - V(p) I-1]n-2-i 

5.13. LEMMA. If A CEr, reach(A) >O,f is a bounded Baire function on Em 
with compact support, and u is a bounded Baire function on {t: t_}0 whose 
support is contained in { t: t < reach (A) },then 

f (f ? (A) ' (U O6 A)dLm 

m-1 r a 
- 4Dm(A,f)>u(O) + E bj(A,f)a(m -j)(m -ij) tm-i-lu(t) dt. 

j=o 

Proof. Since the class of all functions u for which this equation holds is 
closed to subtraction, addition, scalar multiplication and bounded conver- 
gence, it need be verified only for the special case when u is the characteristic 
function of { t: O t < r}, where 0 r < reach (A); but then it reduces to the 
definition of the curvature measures. 

5.14. THEOREM. For any closed sets A CEm and B CEn the following state- 
ments hold: 

(1) SAXB(X, y) = [6A (X) 2 +8B (y) 2 ] 112 whenever (x, y) GEm X En. 
(2) Unp (A X B) = Unp (A) X Unp (B) and 
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(AXB (X, y) = (A (X), B (y)) whenever (x, y) E Unp(A X B). 

(3) reach[A XB, (a, b)] =inf{reach(A, a), reach(B, b) } whenever 
(a, b)eAXB. 

(4) If reach(A)>O, reach(B)>O and k=O, , n+m, then 

4k(A X B, ) = E b(A, .) 0 j(B, *). 
i+j=-k 

Proof. The first three statements are easily verified. 
To prove (4) suppose 

0 < r < inf{reach(A), reach(B)}, 

f and g are continuous functions on Em and En with compact support, and 
h(x, y) =f(x)g(y) for (x, y)CEmXEn. Using the definition of 4bk(A XB, h), the 
Fubini Theorem, the definition of 1j(B, g), and Lemma 5.13, one obtains 

m+n 

Z rrm+n-ka(m + n - k)4k(A X B, h) 
k=O 

fJz,y): 6AXB(z,Y (h o (AXB)d(Lm ?D Ln) 
(x,: 

6 A(x):AB 6AT ()1) )r( 

(fo 0A) (X) (g o (B) (y) dLnydLnX 
{X: Y:x)r 5 B(y) 2 r- (X)2) 

n r 
E Z a(n - ij>I?(B g)J (f o0 A) (X)[r2 - 6A (X) 2] (n-j) I2dLrx 
j=0 (X: 6A (x)s rI 

n m-1 

E Z a(n - j)j(B g) bn(A2f)rn-i + E 
(m - i)a(m - i)4i(A,f) 

=~o i=o 

*tm-i-(r 2 - 12) (n-i)/2dt) 

n m-1 n 

Z rn-ia(n - j)4Dn(A,f)cDj(B, g) + E E rn+n-i-i 
j=O i=O j=O 

J um-i-l(l - U2)(n-i)/2dua(n - j)a (m - i)(m - i) i(A,f)cj (B, g). 

Now in the special case when A and B consist of single points of E, and 
Eq, and whenf and g are the characteristic functions of A and B, the preced- 
ing formula reduces to 

rP+qa(p + q) = rP+q UP-'(1 - u2) qI2dua(p)a(q)p. 
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Returning to the general case one may use this equation with p = m -i 
and q = n-j to conclude that 

m+n 

F r".m+n-k a(m + n - k)4k(A X B, h). 
k=O 

m n 

= Z rm+n-i-ia(m + n - i - j)4?i(A,f)4)j(B, g). 
i=o j=O 

5.15. REMARK. Applying Theorem 5.14 to the special case in which B 
consists of a single point b, one finds that 

4?k(A X {b}, X X {b}) = 4Dk(A, X) for k = , m 

44k(A X {b}, XX {b}) = O for k = +1,** * ,m+n, 

whenever X is a bounded Borel subset of Em. Accordingly the curvature meas- 
ures behave naturally under an isometric injection of one Euclidean space into 
another. 

5.16. THEOREM. Suppose A and B are nonempty closed subsets of En and 

s = inf{reach(A), reach(B), reach(A U B)}. 

Then the following statements hold: 
(1) If xCEn, then 3AUB(X) = inf I {A(x), SB(X)}, 

AfnB (X) _ I Up{A (X), B (X)}. 

(2) If xE Unp(A UB) and SA (X) _B(X), then 

x E Unp(A) and {A(X) = {AUB(X). 

If x E Unp (A UB) and SB (X)-< ?A (X), then 

x E Unp(B) and {B(X) = (AUB(X). 

(3) If xE Unp (A) and &B(X) ?_ A (X) < reach(A UB), then 

x E Unp(A n B) and (A(X) = (AnBf(X). 

If xCUnp(B) and SA(X) _ SB(X) <reach(A UB), then 

x E Unp(A n B) and {B(X) = {AfnB(X). 

(4) If sup {I A (X), SB (X) } < S, then 

5AnB(X) = SUp {SA (X), 5B)J, x E Unp(A n B), 

{ A(X), {B(X)J = {AUB(X), {AnB(X) I . 

(5) reach(AfnB)_s. 
(6) If s > O and i = O,* n, then 

bi(A. ) + bi(B. ) = bi(A U B, ) + (b(A r) B,*) 
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Proof. Note that (1), (2) are obvious, and that (4), (5) are trivial conse- 
quences of (2), (3). 

In order to prove (3) one must show that if 

x C Unp(A), a = {A(X), 5B(X) < 5s(X) < reach(A U B), 

then a EB. Observe that 

{A[a + t(x-a)] = a and a + t(x-a) Int Unp(A U B) for O < It 1. 

The assumption that a EEB would imply that 

5A[a + t(x - a)] < 5B[a + t(x - a)] for small t > 0, 
0 < r = sup{ t: {AUB[a + t(x - a)] = a), 

and it would follow from 4.8 (6) that T> 1, hence (AUB(X) =a; but then aEB, 
because {AUB(X) =(B(x) according to (2). 

Next, to verify (6), suppose f is a bounded Baire function on E. with 
bounded support, 0 <r <s and 

Ar = {x: &A(x) ? r4, Br = {x: 5B(x) < r. 
Using (1), (4), (2) one obtains 

ArU Br= {x: AUB(X) _ r}, Ar Br= {x: bAnB(X) 4 r}, 
n 

E rn-ia(n - i)[bj(A,f) + ,i(Byf)] 
i-O 

= J (fo0 {A)dLn + f(f o {B)dLn 

= fArBr ( A)dLn + fB (f O B)dLn + fr[(f tA) + (f 0 (B)]dLn 
A,-Br B,-Ar ArnBr 

fA B (f 0 tAUB)dLn + (fo 0AUB)dLn 
A,-Br B,-Ar 

+ f [ AUB) + (f 0AnB)]dLn 
r,nBr 

= LrBr(f 0AUB)dLn + fA (f o {AnB)dLn 

ArUBr r,nBr 

n 

= E r-ia(n - i)[cD(A U B,f) + Ii(A r B,f)]. 
i=O 

5.17. REMARK. The additivity property expressed by 5.16 (6) is a sharper 
version of certain properties studied by Blaschke [BL, ?43] and Hadwiger 
[H, 6.12], who used these properties together with invariance under rigid 
motions and continuity (compare 5.8 and 5.9) to characterize Minkowski's 
Quermassintegrale 
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W (A) = a(i) ( n)-i(A) 

for compact convex sets A. It would be very interesting to know whether 
there exists a similar characterization of the curvature measures 4i(A, *) for 
all sets A such that reach(A) > 0. 

5.18. REMARK. The proof of 5.19 will make use of the following classical 
proposition: 

Suppose V is a bounded subregion of E., the boundary of V is the union 
of finitely many disjoint n-1 dimensional submanifolds of class 1 of En, f is 
a real valued continuously differentiable function on a neighborhood of the 
closure of V, and at each point of the boundary of V the exterior normal of V 
and the gradient of f have a positive inner product. Then the Euler-Poincare 
characteristic of the closure of V equals the degree of the map 

(gradf) Clos V: (Clos V, Bdry V) -* (En, En - {O}). 

Furthermore, if Wi, * , Wk are the components of Bdry V, then the above 
degree equals the sum of the degrees of the maps 

(gradf) Wi: Wi--E -En { 

corresponding to i = 1, * .. , k. 
Replacing f by a nearby function of class 2 and with nondegenerate criti- 

cal points, one may derive this proposition from the Morse theory (see [M, 
Chapter VI, Theorem 1.2, p. 145]). 

5.19. THEOREM. If A CEn, reach(A) >0 and A is compact, then 4Do(A) 
equals the Euler-Poincare' characteristic of A. 

Proof. Suppose O<s<reach(A). Since 4Do(A8)=1?o(A), according to 5.8, 
and since A is a deformation retract of A8, it is sufficient to show that 4Xo(A8) 
equals the Euler-Poincare characteristic of A8. 

Applying 5.18 with f-=(6A)2, and observing that 

grad bA(x) = 2s grad 8A(X) for x E P., 

one sees that the Euler-Poincare characteristic of A. equals the sum of the 
degrees with which 

(grad 6A) IP8: P, -V= {V: lVi = 

maps the components of P8 into V; furthermore this sum may be computed 
by integrating the Jacobian of the above map over P8 with respect to Hn-1, 
and dividing by na(n). 

Consider a point pGP8 where (grad SA) I P8 is differentiable. If one identi- 
fies the tangentspace r, of P8 at p with the "parallel" tangentspace of V at 
grad 8A(P), the differential of (grad 8A)| P8 at p becomes the endomorphism 
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of r, corresponding to the bilinear form ZA(P), and using 2.12 (5) one finds 
that the Jacobian determinant equals 

trace[(n-)!-lA()f] 

Accordingly the Euler-Poincare characteristic of A. equals 

Ina(n)=]- trace( [ (n1 f ) t -1r[ A (p) n- 1]dHkp 
P8 

=a<(n)-1n1-1 J trace[sA(P) n-l]dHkp = (Do(Aq) 

by virtue of 5.8, as was to be shown. 
5.20. REMARK. Suppose F1, * * *, F, are elements of an associative and 

commutative finite dimensional algebra over the reals, and let 

7r(m) = j ( E zjF) dH1-1z 
sln{z: lzl=l) j-1 

for m=0, 1, 2, * . . Clearly q (m) =0 in case m is odd, and 

() = H-1(E r { z: Iz = 1}) = la(l). 

If m is a positive even integer, then 

1 3 m r - 1 m/2 

(r)=la (l) y 1+ ..2 
Fj 

In fact, Green's formula implies that 

I I \ ~~~~m-1 
(rn) = F f)Fi ( zjF1) zidH'-lz 

i=1 Elnz. l zl=l} j=l 

I ~~~~~~~~~I \m-2 

= Z FsfF) (m - 1) E zjFj) FdLjz 
i=1 ln{z: lzl<l} = 

= (m-1) i (Ff)2 J I= ( E zjFj) dH-lzdr 
i=l o El~~n{z: lzl=r j=1 

11 

= (mr- 1) (Fi) 2 rm-2+1-17(m - 2)dr 

rn-i 
=+ rn -2 Z (F )27(M -2). 
I + m -2 j=1 

5.21. REMARK. Consider the special case of 5.3 where C is a k dimensional 
submanifold of class 2 of E., and P is open relative to C. If pEP, then 

S(p) = En_kn I |z:IZI = 1i2 
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hence um(p) may be computed by means of 5.20. Applying the formula 

'Pi(C, Q) = a(n -i)-(- i)-l f trace [uk-i(p) ]dHkp 

for i=0, 1, * * *, k, one finds that 

(Pk(C, Q) = Hk(Q), (bi(C, Q) = 0 in case k - i is odd, 

and that, if k - i is even and positive, then 

Is(C, Q) = a -l( - n-i)-l trace {(k -i)!-la(n- k) (n - k) 

1 3 k-i-1 ( [Fj(p)]2 dH p 

-n-k n(k--+)2/2 

(2k-ir(k-i) I2[(k i)/2] )-l trace {( E [Fj(p)]2) } dHkp. 

Accordingly the curvature measures 4bi(C, *) are the indefinite integrals, 
with respect to Hk, of certain scalars algebraically associated with the tensor 

n-k 

E [Fj(p) ]2 EE A 2,2 (,r ) 
j=1 

Furthermore this tensor may be identified, except for a factor - 1/2, with 
the classical covariant Riemannian curvature tensor of C. In fact, define 
el, . . , ek and 01, * , Ok as in the proof of 5.3 and let 

ek+j=fJ forj = 1, * * ,n-k. 

Using the familiar notation of hlie Cartan (see [CA; C3]) one obtains 

dfj *e8=dek+j*e8=wk+j,8 forj= 1,2**,n-k and s= 1,2*, k, 
k k 

Fj = E (dfj * e8) O 08 = E k+j,8 ? 68 forj= 1,* * *,n-k, 
8=1 8=1 

n-k n-k k k 

E (F.)2 = E E E (wk+j,8 A Wk+j,t) ? (08 A Ot) 
j=1 j=1 8=1 t=l 

k k /n-k\ 

E E 
( + Wk+j, A k+j,t) ? (08 A Ot) 

8=1 t=l j=l 

k k 

E E (-Qs,t) ? (08 A Ot) 
8=1 t=l 

k k k k 

=E E E E - - uv(Ou A Ov) 0 ( A A0t). 
s=1 t=i U1 v=1 2 
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Computing the trace of the (k-i)/2th power of this tensor one arrives at 
2(k-i)/2 [(k-i)/2]! times the scalar Hk-i introduced in [WE]. (Note: Weyl's 
R4 is the negative of Cartan's R. t,X V). In case k is even and i = 0 the above 
formula for 40o(C) reduces, in view of 5.19, to the Gauss-Bonnet Theorem of 
[A; AW; Cl; FE1]. 

5.22. REMARK. Assuming A CE. and reach(A) >0, let 

*i'(A, f) = lim I (P I ({ x: AA(X) ? t}, f) 
t-4O+ 

whenever i = 0, , n and f is a continuous real valued function on En with 
compact support; from 5.5 one sees that for i <n this limit equals 

ae(n - i) 1 f (fJo {A)(p) | ( + 1)h1 - \(S)m+1n+i 
P, ~~m-n-l-in- 

trace[ZSA(p)m] dHn-1p. 

Evidently 'i'(A, f) > 4i I (A, f). 
Under the conditions of 5.21 one finds that 

'i(C, Q) = 0 in case i > k, 

and that if i< k, then 

*i(C Q) = a(n -i)-)(n - i)-(k -i) !1- 

fQfEkflz: z=1)trace( 
E 

zjFj(p)] ) dInklzdHk p. 
Q E-knz { lz |l=,) } j=l 

The total absolute curvature 'o(C, C) has been studied in [C3] and [CL], 
and previously for k =1 in the theory of knots (see [MI; FE2]). 

6. The principal kinematic formula. Within the following proof of this 
integralgeometric formula, concerning two subsets A and B of En with posi- 
tive reach, one may distinguish three component arguments: First, struc- 
tural considerations (6.1, 6.2, 6.3, and Parts 1, 2, 3, 10, 11, 18 of 6.11) designed 
to establish qualitative properties of the intersections of A with the isometric 
images of B. Second, a most delicate convergence proof (6.3, 6.5, 6.10, and 
Parts 3, 4, 5, 6, 7, 8, 16 of 6.11) showing that in computing the kinematic 
integral one may approximate A and B by 

Ar = { X: A(X) < r? and Br= {X S:B(X) < r 

Third, computations (6.6, 6.7, 6.8, 6.9, and Parts 9, 12, 13, 14, 15, 17, 19) 
dealing mainly with Ar and Br. In these arguments the theory of Hausdorff 
measure and rectifiability combines with the results of ? ?4 and 5 to furnish the 
foundation, the integral formula 3.1 reduces the global analytic problem to 
a local algebraic problem, and the tensor algebra A **(E) solves the local prob- 
lem. 
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6.1. LEMMA. Suppose f: Em )En is a Lipschitzian map, S C { x: f(x) = 0 1, 
k is an integer, and for each aGS there exists a k dimensional plane P such that 
aCP and f I P has a univalent differential at a. 

Then S is countably m - k rectifiable. 

Proof. In view of [F4, 4.3] it is sufficient to show that if a and P are as 
stated above, then there exist positive numbers r and q such that 

So {x: I x-al < r and I xa- +al > (1 + /2)16p(x)} 

is vacuous. 
Let M be a Lipschitz constant for f, choose positive numbers r and s 

such that 

|f(p) s Isp-a a whenever pCP and p-a l < r, 

and take = M/s. If xES, Ix-al <r and p=#p(x), then 

I x-pI = 5P(x), I x-aI2 = I X-pl2+ I pal2, 

si p-a l < l f(p) l = l f(x)-f(p) l < M l x-pl 

IP p- _ 2< 2 x - p12, I - 2 < (1 + n72)I x - p12. 

6.2. LEMMA. Suppose 
X and Y are separable Riemannian manifolds of class 1, 
dim X = p, dim Y = q, 
f: X X Y -* E. is a Lipschitzian map, 
S C { (x, y): f(x, y) = O}, k is an integer, 

and for each (a, b) CS the map 

fa: Y E., fa(y) =f(a, y) for y E Y, 

is differentiable at b and dfa maps the tangent space of Y at b onto a k dimensional 
subspace of En. 

Then S is countably p +q - k rectifiable. 

Proof. Using coordinate systems, it is easy to reduce the problem to the 
special case in which X=E, and Y=Eq. 

For each (a, b) CS there exists a k dimensional subspace V of the tangent 
space of Eq at b such that dfa is univalent on V, and to V corresponds in obvi- 
ous fashion a plane P CE, XEq such that (a, b) GP and fl P has a univalent 
differential at (a, b). 

6.3. LEMMA. If X is a separable p dimensional Riemannian manifold of 
class 1 and 

IA: X - 
En) v: X -+En () {" I u I 1} 

are Lipschitzian maps, then 

(X X Gn) n { (x, R): ,u(x) + R[v(x)] = O} 
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is countably p + (n- ) (n-2) /2 rectifiable. 

Proof. The map f: X X Gn-*En, 

f(x, R) = ,u(x) + R[v(x)] for (x, R) C X X Gn 

is Lipschitzian. Furthermore for each xEX the map 

f,: Gn- E, fx(R) = f(x, R) for R E G. 

is analytic and df, maps the tangent space of Gn at any RCG, onto an n -1 
dimensional subspace of En; in fact f, is obtained by translation through the 
constant vector ,u(x) from a classical fibre map of Gn onto the n -1 sphere. 
Accordingly Lemma 6.2 applies, with q=n(n-1)/2 and k=n-1. 

6.4. LEMMA. If vEEn, wCEE, IvI =1wW = 1, m<n-1, then 

I v + R(w) 1-mdo,nR < oo. 

Proof. Letting S=EnC\{x: |x| =I} one finds (see [F4, 5.5]) that 

Hn-I1(S) f I v + R(w) 1-mdPnR = f | v + x j-mdHn-lx. 
ans 

Furthermore let C(r) = SO { x: Iv +x I < r } for r >0, and observe that there 
exists an M< oo such that 

Hin-1[C(r)] < Mrn-1 whenever r > 0. 

Consequently 

| v + x 1-mdHn-lx = E f I v + x 1-mdHn-lx 

00 00 

2imM2(1-i)(n-1) = M2-1 E (2m-n+l)i < 0o 
i=O i=O 

6.5. REMARK. Clearly the integral considered in Lemma 6.4 is independ- 
ent of v and w; denote it by Im. 

In case m is an integer it follows from the binomial theorem and Holder's 
inequality, with exponents m/j and m/(m -j), that 

fGj!| v + R(w) K + I v - R(w) 1-1ImdknR 
in 

< (E ) (Im) ilm(Im) (m-f) /m = 2mIm. 

Similarly one sees that if Am,j is defined as in 5.11 (15), then the integral 
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cmj = fJ j v + R(w) , | v - R(w) 1.1 v A R(w) I d4,,R 
Gn 

is finite and independent of v and w. 

6.6. LEMMA. If A CE, B CE, reach(A) >0, reach(B) >0, reach(AfnB) 
> 0 and C is a bounded Borel set contained in the interior of B, then 

(bi(A 0 B, C) = (bi(A 2 C) for i = O, 1, * * * , n. 

Proof. In case C is a compact subset of Arlnt(B), SAnB(X) = SA(x) and 
(AnB(X) =sA(X) whenever x is sufficiently close to C. 

6.7. LEMMA. Suppose: 
(1) V and W are vector subspaces of En. 
(2) k=dim V+dim W-n>O. 
(3) Q is the space of all isometries w such that the domain and the range of X 

are k dimensional vector subspaces of V and W respectively. 
(4) G, H are the orthogonal groups of V, W. 
(5) ,u, v are the Haar measures of G, H such that Au(G) = v(H) = 1. 
(6) U is a k dimensional real vector space. 
(7) e: U-* V and f: U-*W are isometric embeddings. 
(8) V' and W' are the orthogonal complements of V and W in En. 
(9) P is the orthogonal projection of En onto V'. 
(10) X is a real valued jn summable function such that, for RCGG, rq(R) 

depends only on P o RI W'. 
(11) ? is a real valued continuous function on U. 
Then 

,qr(R) *t[R-' I V 0 R(W)]dOnR 
an 

= fnd+ fGdn r(h of o e-1 o g1)d(A ? v)(g, h). 

Proof. The group G X H operates transitively on Q according to the rule 

(g, h) -W = h ow Wo g-1 for g E G, h C H, C E U. 

Since f o e-1CO, a Haar measure 41 over Q, invariant under the operation of 
G XH and with 4+(Q) = 1, is given by the formula 

A = fX (h of o e-1 o g-1)d(, ? v)(g, h) 
aXH 

for every continuous real valued function r on U. 
With gEG associate A(g)CGn so that A(g)| V=g and A(g)| V' is the 

identity map of V'. 
With hCH associate B(h)CGn so that B(h) I W=h and B(h) I W' is the 
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identity map of W'. 
Then G X H operates on Gn according to the rule 

(g, h) *R = A(g) o R o B(h)-1 for g c G, h E H, R E G., 

the measure 0,,, the function q and the open set 

M = G. n { R: dim[V n R(W)] = k} 

are invariant under the action of GXH, and the continuous map 

u: M -* , u(R) = R-11 [V n R(W)] for R E M, 

commutes with the operations of GXH on M and U. Therefore another 
Haar measure 'I over Q, invariant under the operation of G X H, is given by 
the formula 

()= a( o u)dJO 

for every continuous real valued function r on U. Using the uniqueness of 
Haar measure and the fact that 0 -(G -M) =0 one concludes that 

( = Q)P= fGdOn 6. 
an 

6.&8. LEMMA. If 
U, V, W are finite dimensional real vector spaces with inner products, 
G, H are the orthogonal groups of V, W, 
,u, v are the Haar measures of G, H such that ,u (G) = v(H) = 1, 
e: U--V and f: U-*W are isometric embeddings, 
M C: AP P(V), N E Aq q(I, p + q _ dim U, 

then 

trace [(g o e) *(M) * (h o f) *(N) ]d(gs 0 v) (g, h) 
GXH 

/p+ q\ /dimU\ /dim V -1 dim W\ 
- (P + ) )( V ( W) trace(M)trace(N). 

Proof. Denote the above integral by F(,M, N) and observe that F is a 
bilinear function invariant under the endomorphisms of AP P( V) X Aq q(W) 
induced by GXH. Applying 2.13 twice one infers that there exists a real 
number c such that 

F(M, N) = c trace(M)trace(N) for M E AP"P(V), N EE Aqq(W). 

To determine c, choose 

IU E A1'1(U), Iv E Al'1(V), Iw E All'(W) 
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so that the corresponding bilinear forms are the inner products of U, V, W 
and let 

M = (IV) , N = (IW)q. 

Then 

(g o e)*(M) * (h o f)* (N) = (IU)P+q for (g, h) E G X H, 

and it follows from 2.12 (4), applied with k = O and M= 1, that 

dim(U) ! dim(V) ! dim(W) ! 

[dim(U) - (p + q)]] ! [dim(V) - p] ! [dim(W) -q] 

6.9. REMARK. Suppose X and 41 are bounded Baire functions on En and 
IA is a Radon measure over En. 

If 4+ and either X or ,u have bounded supports, then 

'EJXw f x (i6 o R-1 a T_z)d,id(Ln 0D pn) (z, R) 
EnXGn 

- f f ~x(x) f 4[R-(x - z)]dLnzdcixdcPnR 
GEn En 

-J f J f:x(x) f (y)dLnyd1ixdInR = f d, f dLdn. 
GEn En 

Similarly, if X and either 4+ or ,u have bounded supports, then 

fESXGff C(x o T,o R) . t'dcd(Ln 0 q5On)(z, R) = f XdLnfPdIA. 
EnXGn 

If X has bounded support and S is a bounded Borel subset of En, one may 
apply the first formula with i,b replaced by the product of b and the character- 
istic function of S, to obtain 

'XG~ f x * (1t o R-1 o Tz)dAud(Ln 0) qn) (z, R) = f Xd/ * f4dLn. 
EnXGn (Tz ? R) (S)S 

If X and y have bounded support and S is any Borel subset of En, one may 
apply the second formula with X replaced by the product of X and the char- 
acteristic function of S, to obtain 

LnXGn f(iR- 0 T_) (S)(x o Tz o R) . t'dcd(Ln 0 q!}n)(z, R) = f xdLnf t'di/d. 

6.10. LEMMA. If A CEn, B CEn, A is closed, B is compact and 

C(t) = { X: A(X) < t and SB(X) < t} 

for t>0, then 8C(t)(X) ->SAnB(X) uniformly for xEEn as t->O+. 

This content downloaded from 35.13.190.230 on Tue, 1 Apr 2014 14:03:45 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


1959] CURVATURE MEASURES 473 

Proof. If t > 0, then A nB C C(t), 5AnBf(X)- _ C(t) (X) for x-En 
Suppose E>0, let D = {x: 5AnB(X) < 4 , and observe that the sets C(t)-D 

are compact and their intersection is empty. It follows that if t is sufficiently 
small, then C(t) CD, hence 

5C(t)(X) ? 5D(X) ? bAnfB(X) - E for x E En. 

6.11. THEOREM. Suppose 

A C En) reach (A) > 0, B C En, reach (B) > 0, B is compact 

and i=0, 1, * * *, n. Then: 
(1) For Ln (04On almost all (z, R) in EnXGn, 

reach[A ( (Tz2o R)(B)] > 0. 

(2) If X, q/ are bounded Baire functions on En and X has compact support, 
then 

I (i[A r) (T2 o R)(B), x(4 o R-1 ao T2) ]d(Ln 0 qn)(z, R) 
EnXGn 

-=~Z E '(n, k, l)c14(A, X)cIl(B, 0 
k+l=n+i 

(3) If K is a compact subset of En, then 

Iw | bi|[A r)\ (Tz o R) (B), K ]d (Ln 08 On) (z) R) < oo. 
EnXGn 

(4) If A is compact, then 

frflxf(Di [A r) (Tz O R) (B) ] d(Ln 0 q5n) (z, R) = y ty (n, k, l)c4k(A)c1i1(B). 
EnXGn k+l=n+i 

Proof. For r>0 let 

Ar = {X: A (X) ? r}, Br = { y: B(y) <r}, 

Vr = {x: 5A(X) = r}, Wr = { y: SB(Y) = r}. 

Choose s and p so that 0 <s <p <inf {reach(A), reach(B) }. 
For t>O let Zt be the subset of V.XWSXGn consisting of those points 

(x, y, R) for which 

I grad 5A(X) + R[grad 5B(y)] I < I or I grad 5A(X) - R[grad SB(Y)] | < t 

For r0 and R E Gn let ;r,R V.XW )-En 

s-r r [s-r r] 
r,R(X, Y) = (A(X) + -x - R (y) + Y 

s s s s 

For r ? 0 let Pr: V8 X W X Gn-En X Gn , 
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r(X, y, R) = (rr,R(X, y), R). 

In case i ?n-2 define di as in 5.12 (6) with 

V = sup {p(p -- s)', [1 + p(p - s)-]s1} 

and let 

u(x, y, R) = di( I grad bA(X) + R[grad 6B(y)] 1-' 
+ I grad bA(X) - R[grad 6B(Y)] 1-1)n2-'- 

for (x, y, R)EV.XW8XGn; in case i>n-2 let u(x, y, R)=O. 
Throughout the following Parts 1 to 7 let K be any compact subset of En and 

let U= {x: 3K(x)< 3p+diam(B)}fI V8. 
PART 1. Zo is countably (n+2)(n-1)/2 rectifiable, and 

(Ln 0 4n)[Pr(ZO)] = 0 for r > 0. 

Proof. Applying 6.3 with X= V8XW8, p=2(n-1), 

,u(x, y) = grad bA(X), v(x, v) = ? grad 5B(y) for(x, y) C V8 X W8, 

one finds that ZO is countably k rectifiable, where 

k = 2(n- 1) + (n- 1)(n- 2)/2 = (n + 2)(n - 1)/2. 

Since ;r is Lipschitzian, by 4.8 (8), it follows that 

Hk+1[ k(Zo)] = o. 

Furthermore Okn is proportional to the n(n - 1)/2 dimensional Hausdorff meas- 
ure over Gn, hence Ln ?n is proportional to the 

n+n(n- 1)/2 = n+ (n-1) + (n- 1)(n- 2)/2 = k+ 1 

dimensional Hausdorff measure over E. X Gn. 
PART 2. If 0 < r <p, (z, R) GE. X G. and 

s -r r - 

g(x, y) = - A(X) +-X for (x, y) E r,R{ Z}, 
5 5 

then g(r{ z1)= VC(T, oR)(Wr), g is univalent and Lipschitzian with 
Lipschitz constant p/(p-s), and g-I is Lipschitzian. 

If A,C\(T.oR) (Br) meets K, then t7I{z} CUXW8. 
Proof. The first statement follows from 4.8 (13) and (8), and the fact that, 

for cE Vrn(T. o R)(Wr), 

r - S r r -s s 
g-1(c) A= ( A(C) + - C tB[R-(c - z)] +-R1(c-z) 

r r r r 

To prove the second statement, observe that if 
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1959] CURVATURE MEASURES 475 

pEKG)Ar(n(TzoR)(Br) and (x,y)eG2R{z1, 
then 

K(X)? p - X I ? p - g(x, y) + I g(x, y) - x 

< diam(B,) + r-s - < diam(B) + 3p. 

PART 3. If O < r < p, t > 0 and (z, R) E (En X G.) - g(Z t), then 

reach[Ar n (Tz o R) (Br)] > (p - r)t/4, 

Vrn (Tz O R) (Wr) is an n -2 dimensional submanifold of class 1 of En, and 

| bI| [ArC (Tz O R)(Br), K n VrC (Tz O R)(Wr)] 

< u(x) y R)dHn-'(x y). 
(uxw,) nrr,R'1{r} 

Proof. Observe that 

(Tz o R)(Br) = {x: (6Bo R-1 o T_z)(x) < r? , 

grad(5B o R-' o T_7) = R o (grad &B) o R-1 o Th., 

and that if cCVrC\(TzOR)(Wr), (x, y)Cz,`{z}, c=g(x, y), where g is the 
function defined in Part 2, then 

grad 6A(C) = grad 6A(X), grad(6s o R-1 o T_z) (c) = R[grad WB(y)I, 

hence I grad bA(C) ? grad(ho a R-1 o T_z) (c) I > t. 
Now if c EA r (T, o R) (B.) and 

v C Nor(Ar, c), w C Nor[(Tz o R)(Br), cl, | vj >0, 1 w| > 0, 

then ce Vr(Tz O R)(W.) and 

v | v I grad 5A(Cj, W = 1 W1 grad(&B O R-1 0 T_z)(c), 
v+w W 

IvI + IwI 2 

because on the line segment joining two unit vectors the midpoint is closest 
to the origin. Since 

reach(Ar) > p - r, reach[(Tz o R)(Br)] > p - r 

according to 4.9, it follows from 4.10 that 

reach[Ar n (T, 0 R)(Br)] > (t/2)(p - r)/2. 

It is now also clear that VrC'(Tz o R) (Wr) is an n -2 dimensional com- 
pact submanifold of class 1 of En. Since g-1 is Lipsch'itzian, t {`z } is n-2 
rectifiable, and 5.12 may be applied with 
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Q = tr,R{Z} C- Arn (T2oR) (Br), 

ji(x, y) = grad aA(X), i'(x, y) = R[grad 5B(Y)] for (x, y) E Q. 

Finally, reference to the last statement of Part 2 completes the proof of 
Part 3. 

PART 4. If S is a Borel subset of En X Gn and r > 0, then 

LUXWIXGfl) rb- uJird(Hn-1 0 Hn-1 0 On) 
(UXW.XG.) n r-, (S) 

- fSf(UXW.) ~~r,jf1~ u(x, y, R)dHn-2(x, y)d(L. 0D iO)(z, R). 
UXW,) ntr,R_1{ 2} 

Proof. Applying Theorem 3.1 with 

X = V8 X W8 X Gn, Y = En X Gn f = Tr, 

g(x, y, R) = u(x, y, R) for (x, y, R) z (U X WJ X Gn) I ( 
g(x, y, R) = 0 for (x, y, R) z (V8 X W8 X Gn) -(U X W8 X Gn) r ;r 

m = 2(n-1) + n(n- 1)/2, k = n + n(n-1)/2, m-k=n-2, 

one obtains 

JUXWIXG,I)fl rl u(x, y, R)J-r(X, y, R)dHm(x, y, R) 
(UXWsXGn) nCr-r(S) 

= I'S f(UXWaXGn)fljr1f(Z,) u(x, y, Q)dHn-2(x, y, Q)dHk(z, R). 
S UXW,XGn ) n r,-' I (z, R) ) 

Furthermore, if (z, R)=EnXGn, then 

(U X WJ X Gn) r) r I(z, R)} {(x,y, R): (x,y) E (U X W8) rr,R{Z}} 

and the function mapping (x, y) onto (x, y, R) is an isometry, hence the inside 
integral equals 

LUXWI) ~~r,R' u(x, y, R)dHn-2(x, y). 

Finally letq= Hn(n-l)12(Gn) and observe that 

Hn(n-1)12 agrees with q'n over Gn, 

HUn agrees with Hn-1 0 Hn-1 0 qPn over U X W8 X Gn, 

Hk agrees with Ln 0 qgn over En X Gn. 

PART 5. If 0 <r <p and S is a Borel subset of EnXGn, then 
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* fb | q(i I [Ar n (Tz o R) (Br), K]d(Ln 0 4n) (z, R) 
s 

-J uJprd(Hn-I <8) Hn- I(S ?0n) 
(UXWsXGn) ntr-0 (S) 

+ [ I (Di I (Ar, K) + | Ii (Br)](Ln 0 40n)(S). 

Proof. One sees from Part 1, 3 and Lemma 6.6 that, for Ln $J?n almost all 
(z, R) in En X Gn, 

(D I [Ar n (Tz o R) (Br), K] 

< | 4iI[ArQn (Tz0R)(Br), KnVrQn (Tz0R)(Wr)] 

+ Di |[Ar n (Tz o R)(Br) K n Ar- (Tz o R)(Wr)] 

+ Dil [Ar n (Tz o R) (Br), (Tz o R) (Br) - Vr] 

< 
f u(x, y, R)dHn-2(x, 

y) + I (Di 

j (Ar, 

K) + | (Br) 
(uxw.) n r, R t 

and then one uses Part 4 to estimate the upper integral over S. 
PART 6. 

sup UJ;rd(Hn-i 0 Hn-1 0 q5n) < 00o 
0<r <p UXWsXGn 

Proof. Since the functions 3r corresponding to 0 <r < p are equi-Lipschitz- 
ian, there exists a number Ml such that 

Jtr(X, y, R) < M whenever 0 < r < p, x C U, y C W8, R E Gn 

and ;r is differentiable at (x, y, R). Assuming i<n-2 and applying 6.5 with 
m = n -2- i one finds that the above integrals do not exceed 

M f f u(x, y, R)d4nRdHn-'ydHn-1x 

< Mdi2n-I-iIn-2_jHn-1(W.,)Hn-1 (U) < 00 . 

PART 7. For each E > 0 there exist t > O, h > 0 and a compact subset S of 
EnXGn such that 

(Ln 0 40n)(S) <e 

and such that if 0 <r < h, then 

tJr[ZI n (U X Ws X G.)] C S, 

I [Ar r (T. o R)(Br), K]d(Ln 0 cpn)(z, R) < e. 
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Proof. Recalling 5.10 choose a number M? 1 such that 

| i 1|(A,, K) + I Ji (Br) ?<M for 0 < r s. 

Assured by Parts 1 and 4 that 

[Ln 0 On)[-o(Zo)] = 0, 

f(UXW8XGS fl~01 [~(ZuJ;od(Hn-l 09 Hn-' 0 4) = 0, 
(uxwsxG ) nt0-l [r0(zo) ] 

use Part 6 to secure an open subset P of En X Gn such that 

N0(Zo) C P, (Ln ) 0n) (P) < e/(2M), 

LUXW8XGS)fl~.O~1P uJ?od(Hn-l (0 Hn-1 (0 4n) < e/2. 
(UXW.XGn) n o-l (P) 

Choose a compact subset S of P such that 

to[(U X Ws X GO) n Zo] C Interior S, 

choose a positive number t such that 

to[(U X Ws X Gn) n Zt] C Interior S, 

and choose a positive number h ? s such that if 0 r ? h, then 

Mr[(U X W. X Gn) n Zt] C Interior S, 

Mr[(U X W8 X Gn) - (P)] C (En X G) - S. 

Since the functions J;r converge boundedly to JP0 one may also require that 
if 0 ?r <h then 

U UJtrd(Hn-I 0 Hn-1 0 n) < e/2. 
(UXWsXGn) nlo-1 (P) 

Accordingly, if 0 <r _ h, then 

(U X Ws X Gn) nA trl(S) C t-o(P) 

and it follows from Part 5 that 

f j ?J4j j [Ar n (T2 0 R)(Br), K]d(Ln 0 4.)(z, R) < e/2 + Me/(2M) e. 

PART 8. For L n 0 n almost all (z, R) in En X Gn, 

reach [A C) (T2 o R) (B) ] > 0 

and (Di [ArG'(Tz 0 R)(Br), *] converges weakly to (i[AGr)(T2 o R)(B), *] as 
r o. S+. 

Proof. Since these assertions are obviously true in case An(Tz o R)(B) is 
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1959] CURVATURE MEASURES 479 

empty, and since E. is the union of countably many compact sets, it is 
sufficient to prove that the assertions hold Ln 04. almost everywhere in 

M(K) = I (z, R): A n (T7' o R) (B) meets K 

where K is a compact subset of En. 
Given E>0, apply Part 7. For (z, R) z M(K) - S one sees from Parts 2 

and 3 that if 0<r!h, then 

Pr {(z, R)} C U X Ws X Gn, (z, R) ( Pr(Z) 

reach [A r n (Tz o R) (Br) ] > (p -h)t/4, 

and uses 6.10, 4.13, 5.9 to infer that 

reach[A n (T2 o R) (B)] _ (p - h)t/4 

and (Di [Arn (Tz o R) (Br), *] converges weakly to 4i [A n (Tz o R) (B), *] as 
r-*0+. 

In the remaining parts of the proof of the theorem some further conventions 
are needed: 

For r>O, RCG. let 

tlr,R: Vr X Wr -> En, tlr,R(X, y) = x - R(y). 

For r > 0 let 71r: Vr X Wr X Gn *EnX Gn, 

tlr(X, y, R) = (r,R(X, y), R). 

For 0 <r <p let Pr be the subset of VrX Wr consisting of all points (x, y) 
such that either (grad 8A) | Vr is not differentiable at x or (grad 6B) I Wr is not 
differentiable at y. 

For 0 <r <p, xE Vr let Vr(x) be the intrinsic tangent space of Vr at x. 
For O<r<p, yCWr let Wr(y) be the intrinsic tangent space of Wr at y. 
For 0 <r<p, (z, R)G(EnXG.) - r(Zo), xC VrG(Tz 0 R)(Wr) let rT(z, R, x) 

be the intrinsic tangent space of VGr(T2 0 R)(Wr) at x. 
For 0 < r <p, (z, R) G (En X Gn.)>-r(Z0) let 

ar, z, R: Vr n (T2 0 R)(Wr) Vr, ar,z,R(x) = X; 

br,z,R: Vr r (T2 0 R)(Wr) " > Wr, br,z,R(X) = (R-1 0 T.2)(X). 

Observe that if xC VrC(Tz o R)(Wr) and y= (R-I o Tz2)(x), then dar,z,R and 
dbr,z,R map Tr(Z, R, x) isometrically into Vr(x) and Wr(y), and induce homo- 
morphism 

ar,z,R and br,z,R 

mapping A**[Vr(x)] and A**[Wr(y)] into A**[7r,(z, R, x)]. 
Defining Am,j and cm,j as in 5.11 (15) and 6.5 let 
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Uj(x, y, R) =An-2i,j( j grad 3A(X) + R[grad 3B(y)] | 

I grad SA(X) - R[grad SB(Y)] j) 
for j = O, , n-2-i, 6A(X) <p, 6B(y) <p, RCGU. Also let 

( n )-\ -2) ( 1y 1 '/ n- 1y 

= cx(n - - - - i n - 1)! i - 

Ii =a(n -i)-l(n i)-lCn-2-i,jSj(ni- i -j1) ! 

a(n - i-j- )(j + 1)!a(j+ 1). 

PART 9. If 0<r<p, RGG (x, y)CVr X Wr, then 

Jflr,R(x, y) = 2(n2)12 j grad SA(X) A R[grad SB (y)] | 

Proof. Since 

dim(tan[Vl, x] n tan[R(Wr), R(y)]) > n - 2, 

there exist e1, * * , enCEn such that 

ei, * *, en-2, en-1 is an orthonormal base of Tan[Vr, x], 

ei, .. ** en-2, en is an orthonormal base of Tan[R(Wr), R(y)]. 

Moreover the intrinsic tangent space of VrX Wr at (x, y) has an orthonormal 
base consisting of 2n -2 vectors which d17,,R maps onto 

ei, .. * * en-2, en-,) el) .. 
*I* en-2, en 

respectively, and therefore 

J7lr,R(x, y) = 2(n-1)12 I e1 A . . . A en-2 A en-, A en - 2(n-l)12 en-1 A en 

Now the orthogonal complement of e1, , en-2 has the two orthonormal 
bases 

I en_l, grad &A(X)} and {en, R[grad B(y) ] }, 

whence it follows that 

en-I A en ? grad SA(X) A R[grad 5B(y)]. 

PART 10. If O <r <p, then 

(Hn-' 0 Hn-' 10 n)[(7r' 0 r)(ZO) = 0. 

Proof. From Theorem 3.1 and Part 1 one obtains 

=J77rdH2n-2+n(n-l) (2 Hn-2 [7r-'1 { (z, R) } ]dHn+n(n1-) 12(z, R) = 0. 
r-1 r r (Zo) I Pr (Zo) 

Furthermore J7r vanishes almost nowhere, because Part 9 shows that if 
(x, y)GEV,X Wr, then 
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Jnr(x, y, R) = Jnr,R(X, y) 5 0 for 4n almost all R in Gn. 

PART 11. If O<r<p, then, for L.0(4 almost all (z, R) in EnXGn, 

H (r= rR 0. 

Proof. Since H2*72(rr) = 0 H2n-2+n(n-l)/2(PrXGn) =0, and 3.1 implies that 

Hn-2 [ (r. X Gn) \ -7' I{ (x, R) }dlln+n(n-) 12(z, R) = 0. 
EnXGn 

Moreover, if (z, R)CEnXGn, then 

(FrrX Gn) lr, 77r { (z, R)} ={(x, y, R): (x, y) E rr n {z}} 

is isometric with rr?r-,Ri { zI 
Throughout the following Parts 12 to 17 let X and i1 be bounded continuous 

functions on En, and suppose X has compact support. 
PART 12. Suppose 0 < r <p, (z, R) C (En X Gn) - ;r(Z0) and 

H (prfl\tqr%{Z}) 0.r 
If i_n-2, then 

'Vrfl(T OR)(Wr) x (f o R-1 o T_z)d4i[Af n (Tz o R)(Br),] 
Vr n (7,z ? R) (W,) 

n-2-i 

= a(n - i)-'(n - i)-2-(n-2)2 E f x(x)4t(y)Uj(x, y, R) 
j== rIR {ZI 

trace(ar z,R[IA(x) b2i i] z, R [:zB(y)1)dH 2(x, y) . 

If i = n-1 or n, then I (D4 [Arn\(Tz O R) (Br), Vrr\(Tz O R) (Wr) 0. 
Proof. Applying the results of 5.2, 5.3, 5.11 with 

P = Vr n (TzoR)(W,), C = Ar n (TzoR)(Br), 

A = (grad SA) I P, V = [grad(h o R-' o T_z)] I P 

one finds that 

c(C, Q) = a(n - i)-'(n - i)-' trace[un-2-i(p)]dHn-2p 

for every Borel set QCP, and consequently 

x * ( nf o R-T o T)z)d()(C e d) 

= a(n - )-'(n - )-i x(p)V1[(R-1 o Tz)(p)] trace[Un-2-i(p)]dHn2 p. 
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Letting 

h: En -* En X En, h(p) = (p,(R-1 o T_z)(p)) for p EE En 

one sees that I h (p)-h (q) 2 =212 p-q I whenever p, q E En , and that h(P) 
= nr,z{z}. Hence the preceding integral over P equals 

2-(n-2) /2 X(x)4/(y) trace [un-2-i(x) ]dHn-2(xX, y) 

n-2-i 

= 2-(n-2)/2 E Ix(x)i,(y) Uj(x, y, R)trace[M(x)n-i-2-iN(x)i]dHn-2(xX, y). 
i=O Vr R-(Z) 

Now observe that for pEP the bilinear forms of Tr(z, R, p) corresponding to 
M(p) and N(p) are the second fundamental forms of P at p associated with 
the normal vector fields ,u and v; that for (x, y) E ( V, X Wr) - r, the bilinear 
forms of Vr(x) and Wr(y) corresponding to Z:A(X) and EZB(y) are the second 
fundamental forms of Vr and W1 at x and y associated with the normal vector 
fields (grad 8A) I V7 and (grad 8B) I Wr; and that 

,u = [(grad 5A) Vr] o ar,z,R, V R o [(grad 6B) I W7] O br,z,R. 

Since second fundamental forms behave naturally under inclusion maps and 
isometries, one infers that 

M(x) = 
o-4A 

N(y) - b=z,R[5B(Y)] 

whenever (x, y) E 77 -Izr. 
PART 13. If O<r<p and j=O, n , n-2-i, then, for Hn- IHn-I almost 

all (x, y) in VrX WT, 

fGUj(x, y, R) I grad 5A(x) A R[grad 5B(Y)] [ 
Gn 

*trace (ar,x-R (y), RIVA (X) n 2 
]br, x-R (,y),R I B(Y) i]) dORii 

=cn2-i,jsjtrace [ ZA (x)n2-ii] trace [ VB(y) i. 

Proof. Using Part 10 one sees that, for Hn-'1Hn-1 almost all (x, y) in 
V, X Wrl 

4n[{R: (x - R(y), R) E Pr(Zo)}] = 0 and (x, y) EE r. 

Fix such a point (x, y) and let 

v = grad 5A(X), w = grad 5B(y), V = V7(x), W = W (y), 

M = eA(X)n-2-i-i E An-2-i-i,n-2--i(V), N = 2ZB(y)' E Ai"(W), 

-q(R) = Uj(x, y, R) Iv A R(w) I 
= An-2-i,j[ Iv + R(w)I, v - R(w) vAR(w)I for R e Gn. 

This content downloaded from 35.13.190.230 on Tue, 1 Apr 2014 14:03:45 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


1959] CURVATURE MEASURES 483 

Recalling 4.6 identify V with Tan( Vr, x), and W with Tan(Wr, y). 
For 4. almost all R in G. it is true that 

(x - R(y), R) E MU, 

and one may identify Tr(x-R(y), R, x) with VnR(W). Then the restrictions 
of 

dar,x-R (y),R, dbr, x-R () ,R 

to Tr(x-R(y), R, x) become identified with 

the inclusion map of V n R(W) into V, 

R-1 I V n R(W): V n R(W) - W. 

Now readopt the conventions of 6.7 with k=n-2, noting that -q(R) is 
determined by v @R(w), hence by P o RI W'. For wCO let S(W) be the inclu- 
sion map of the domain of w into V, and let 

P(w) = trace[S(w)*(M).c*(N)3. 

Then the given integral can be computed by 6.7, with 

ftid0in = Cn-2-i,j 

Gn 

according to 6.5. Furthermore, if (g, h) CG XH, then 

dmn(h of o e-I o g-') = rng(g o e), 

P(h of o e-' o g-') 
= trace((g o e)*[S(h of o e-' o g-l)*(M) * (h of o e-1 o g-1)*(N)]) 

= trace[(g o e)*(M) * (h of)*(N)]. 

Accordingly 6.8 implies that 

'X (h of o e-1 o g-')d(,g 0 v)(g, h) = sitrace(M)trace(N). 
GXH 

PART 14. If O<r<p andj=O, * * ,n-2-i, then 

I f JW (X(x)y6(y)Uj(x, y, R) 
EnXGn Ir, R t 2 

*tra,ce(ar,z,R[;p!)f- '-i]b*r,z, R [ Es(y)i])dH -(x, y)d(Ln (9 10n) (z, R) 

= 2(n-2)12Cn-2 - i - j - 1)!a(n - i - j - 1)(j + 1) !a(j + 1) 

* <i+j+l( A r x) -I>n-j 1(Br2 0)) . 

Proof. To see that the above integral exists, apply Theorem 3.1 with 
f =7r, observing that if (z, R) CEnXGn, then X77` {(z, R) I is the isometric 
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image of -q7,-{z} under the map carrying (x, y) into (x, y, R). 
To compute the integral, first apply Fubini's Theorem to L. 0ck," and 

for each REG, apply 3.1 withf=7fr,R to obtain 

JX Jb 
X(x)41(y)Uj(x, y, R)trace(ar, x-R (y), R I44A()f-- 

Gn FrXWr 

r,:y-R) ,R [VB(y) 1)fJnr,R(X, y)dHn-2(x, y)dOnhR. 

Next apply Fubini's Theorem to Hn-2 30n, and apply Part 9 to obtain 

2(n-2)I2 'XW Vy) fUj(x, y, R) I grad 6A(X) A R[grad B(y)] | 
FrXWr Gn 

* trace(ar,-R (x) ,R[(X) 2- i (y) i? [ B(y)i])dpnRdH2n-2(X, y). 

Then apply Part 13, and apply Fubini's Theorem to Hn-' ?Hn-' to obtain 

2 (n-2) 2Cn.2-i,jSj fx(x) trace[ AV4 (x)n-2-i]dHn1--x. * (y) trace[ EB (y) i] dHn-'y. 
Vr Wr 

Finally apply the last formula in 5.8 twice to determine the integrals over 
Vr and Wr. 

PART 15. If O<r<p and i?n-1, then 

fEflX?i[Ar Cn (Tz O R)(Br), X ('1 0 01 T-z)]d(Ln 0 (n)>(zB R) 
EnXGn 

=Ibi(Ar, X)?n(Br, IP) + Pn(Arj X)j(Brj 1) 
,-2-; 

+ ? tj1J?i+j+i(Ar, X)4bn-j-1(Br, 4). 
j=0 

Proof. If (z, R) E (En X Gn) -r(ZO), then 

?i[Ar (n (Tz o R) (Br), X X (VI o R-' o Tz)] 

equals the sum of the three integrals 

C (z, R) = x (fo R-1 o T_z) dCb [ A r r, ( Tz o R) (Br))X*J 
vrfn(Tz ? R) (Br-Wr) 

D(z, R) = 'Ax (#o R-' o T_z)dcIi[Ar C (Tz o R)(Br), *1] 
(A,-v,) n (Tz- ? R) (W,) 

E(z, R) = x f (1 o R-1 o T-z)dDi[Arfn (Tzo R) (Br) J 

drn (Tz a R) (W ta 

and one sees from 6.6 and 5.8 that 
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C(z, r) = R x B (P o R-1 0 T_z)dcji(Ar* ), 
(Tz ? R ) (Br-W,) 

D(z, R) = A X * (1 o R-1 o T_z)d[(Tz O R) (Br), 

~~~(x o TZ o R) * ~d ti(Br*). 
(R- o T_Ts) (Ar-Vr) 

Applying 6.9 one obtains 

'XG 0Cd(Ln n) = CJi(Ar, X>%n(Br, '1), 
EnXOn 

fEfXGfDd(Ln 0 4n) = 4n(A r X)cJ?(Br, ifr). 
EnXGn 

If i_ n-2, it follows from Parts 1, 11, 12, 14 that 
n-2-i 

Ed(Ln 0 45n) = , tjcj+j+i(Ar, X)4?n_j-1(Br, #). 
EnXGn j=O 

If i=n-1, then E(z, R)=O for (z, R)GEnXGn -r(Zo). 
PART 16. If i_n-1, then 

f (b[A n (Tz o R) (B) I( X o R-1 o T_Z)]d(Ln, 0 On) (z, R) 
EXGn 

EGA = * X)4n(B, #1) + 4 xn(Al X)4(B, j) 
n-2-i 

+ tj?+j+1(A, X)4n-i-l(B, 1). 
j=o 

Proof. Since one knows from 5.10 that, for k=, * , 

'Ik(Ar, X) -- Dk(A, X) and 'Ik(Br, #1) > bk(B, vk) 

as r- O+, it will be sufficient to show that the integral of Part 15 approaches 
the integral of Part 16 as r- +O+. 

Let M be a common upper bound of I x I and 141 I| and let K be the sup- 
port of X. 

Given E >0, choose t, h, S according to Part 7. Then 

fI C|i[ArC (Tz O R)(Br), X ( O R-1 O T_z) I d(Ln (D 0 n)(z, R) < EM2 

for 0 <r < h, and it follows from Part 8 and Fatou's Lemma that 

f | i[A n (Tz o R)(B), x (1o R-1 o T_z)]| d(Ln 0 4n)(z, R) ? EM2. 
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Referring again to 5.10 one obtains 

N = sup |i, I (C): C C Bh and reach(C) ? (p - h)t/4} < oo. 

If (z, R)z(EnXG.)-S, 0<r<h and ArCn(Tz O R)(Br) meets K, then Parts 
2 and 3 imply 

(p - h)t/4 < reach[A, r) (T, o R)(Br)] = reach[(R-' o T_z)(Ar) G Br] 

I 4>t [Ar fli (Tz o R)(Br)] = I (i I [(R-1 o T_z)(Ar) r\ Br] _ N, 

I -ti[Arr (TzoR)(Br)]iX'(lOR-'O T_z)I| <NM2. 

Observing that the set 

D = { (z, R): (Tzo R)(Bh) meets K} = { (x-R(y), R): x G K, R e G, y E Bh} 

is compact, and recalling Part 8, one may apply Lebesgue's theorem concern- 
ing bounded convergence to D - S, and conclude that 

lim sup f I 4bi[Ar rl (Tz o R)(Br), X- (1 o R-1 o Taz)] 
r-+o+ EnXG, 

- 4'[A r) (7TZ o R)(B), x* (1,V O R-1 o T_z)] I d(Ln 0 p.)(z, R) ? 2EM2. 

PART 17. 

f 4'n[A r) (TZ o R)(B), X -(4P o R-1 o T_z)]d(Ln 0 cp.)(z, R) 
EnXG 

- cI(A, X)4n(B, Vt/). 

Proof. Using 5.8 and 6.9 one finds that the above integral equals 

w L . x * ('k o R-I o T_z)dL Ed (Ln 0 'pn) (z, R) 
EnXGn On(Tz?R) (B) 

= 'EjXGw .fTJ R)(B) (o O R-1 a T7z)d4n(A, *)d(Ln 0 0pn)(z, R) 
EXGn (Tz ? R ) (B ) 

= bn(A,x) 'BdLn = -n(A, X)4Yn(B, ). 

PART 18. PROOF OF (3). In order to prove that the integrand of (3) is an 
Ln 04)n measurable function, consider for m = 1, 2, 3, the set Fm of all 
real valued continuous functions f on En such that 

I f(x) I < 1 whenever x G En) f(x) - 0 whenever 6K(X) > m-', 

and let Cm be a countable dense (with respect to uniform convergence) subset 
of Fm. One sees from Parts 16 and 17 that if fEFm, then 

mb[ r ( Tz fo R) (B) I f 
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is L. 04, measurable with respect to (z, R). Furthermore 

| biI [A n (Tzo R)(B), K] = lim sup bi[A n (T,oR)(B),f]. 
r-l co fECm 

Now one may use Part 8, Fatou's Lemma, and Parts 5, 6 to obtain 

fEflXf | i I [A n (Tz o R)(B), K]d(Ln 0 cpn)(z, R) 
EnXOn 

?lim inf |i j [Ar n (Tz o R)(Br), K]d(Ln 0J 4n))(z, R) < ?. 
r--o+ EnXOn 

PART 19. PROOF OF (2) AND (4). Through use of (3) and bounded con- 
vergence, the formulae of Parts 16 and 17 may be extended from the con- 
tinuous case to the case in which X and af are bounded Baire functions, X hav- 
ing bounded support. Hence the proof of (2), and its corollary (4) resulting 
when X and af are the characteristic functions of A and B, may be completed 
by showing that 

ti= 'y(n, i +j + 1, n-j- 1) forj = 0, * , n - 2-i. 

For this purpose let k=i+j+l, I=n-j-1 and consider the special case 
where A and B are k and I dimensional cubes. Using 5.15 one sees that 

-I)k(A) = Hk(A), 4im(A) = 0 for m > k, 

cI(B) = H'(B), 4bm(B) = 0 for7m > 1. 

Moreover, for Ln ?4n almost all (z, R) in EnX Gn, ACn(TZ o R)(B) is either 
a k + 1- n = i dimensional convex set or empty, hence 

bi[A r) (T, o R)(B) ] = Hi[A C' (T, o R)(B)]. 

Substituting in the formula of Part 16 one obtains 

fEflXGfHi[A C) (Tz o R)(B)]d(Ln 0 4n)(z, R) = tIHk(A)IHI(B). 
EnXOn 

On the other hand [F7, 6.2] shows that this integral equals 

'y(n, k, l)Hk(A)HI(B). 

6.12. REMARK. The following simple example shows that 6.11 (1) may fail 
to hold in case neither A nor B is compact. 

Let H be the subgroup of E2 consisting of all points both of whose co- 
ordinates are integers, let C be a circle of radius 1/3 in E2, let A be the union 
of all translates of C by elements of H, and let B be a straight line in E2, so 
that reach(A)= 1/3 and reach(B) = oo. Then almost all isometric images of 
B have irrational slopes. Moreover, if L is a straight line with irrational slope, 
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then the image of L in E2/H is dense in E2/H, hence L cuts suitable translates 
of C at arbitrarily near points, and therefore reach(ACnL) = 0. 

6.13. THEOREM. If B is a compact subset of En, reach(B) >0, ,6 is a bounded 
Baire function on En, i=0, .* .. * n and m=0, * . , n-i, then 

f bi[X?m(R, w) n B, ip]d(4n 0 Lm)(R, w) = y(n, n - m, m + i)4bm+i(B, sp). 
GnXEm 

Proof. Let 

A = En n {x:xi = O for i = 1, ,m} 

and let X be the characteristic function of 

AN nIx:O _ xi _!! l for i =m+ 1, ,n}. 

Then 4?nm(A, X) = 1, bj(A, X) = 0 for j n-m, and the sum of 6.11 (2) equals 

y(n, n- m, m + i) m+i(B, V). 

Identifying En with EmXEn-m and applying the Fubini theorem one finds 
that the integral of 6.11 (2) equals 

(bi[A n (T(w,y) o R) (B), X (i O R-1 0 T(-w,-y)) 

dLn-myd(Lm 0 4n)(w, R). 

In order to compute inner integral with respect to y, for a fixed (w, R), 
abbreviate 

(D[A n (T(w,o) o R) (B), *] ]-, + o R-1 o T(_w,o) = f 

and note that 

bi[A n (T(w,y) o R)(B), x (' o R-1 o T(,))] = f (x o T(o,y)) jfd4 

whenever y En-m, because A = T(o,y)(A); hence one obtains 

'Enfm fEmXEnmX(u, v + y)f(u, v)dA(u, v)dLmy 
En-m EmXEn-m 

= 'EmXEnf m f(, v) f X(u, v + y)dLmydq(u, v) 
EmXEn-m En-m 

= fd,u = 4i[(R-l o T(_,o)) (A) n B, #I 

= b[[Xfnm(R Y -W) r) B, #P] 
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because if (u, v) belongs to the support of ,, then (u, v) CA, u = 0, and 

fEn mX(?, v + y)dLn-.my = 1. 
En-m 

Thus one finds that the integral of 6.11 (2) equals 

f 4KfiN (R , -w) n B, #p]d(Lm 0) 4n)(w, R), 
EmXGn 

and one completes the proof by observing that Lm 0n is invariant under the 
inversion mapping (w, R) onto (-w, R-1). 

6.14. REMARK. If A CEn, reach(A) >0 and Q is a bounded Borel subset 
of A (k) [see 4.15 (3) ], then 

4j(A, Q) =0forj=k+1, .. *,n, 

0 _ 4k(A, Q) _ Hk(Q)j 

4Dk(A, Q) > 0 in case Hk(Q) > 0, 

4k(A, Q) = Hk(Q) in case A = A(k). 

These statements are obviously true for k =0, because A (0) is countable and 

Ln({ x: 3A(X) ? r and (A(X) = a}) = rna(n)bo(A, {4a) 
whenever O<r<reach(A) and a A. Moreover one may pass from k=O to 
k>0 by means of the following considerations: Recall 6.11 (1), assume A is 
compact, and let 

k 
pn: En -+PEk, pn(X) = (x1, * Xk) for x E En. 

Using 4.15 (3), verify that 

Qn 
n 

-k(R, w) C [A nk xflk(Rx w)](0) 

for 4n0 Lk almost all (R, w) in Gn X Ek; in fact the set of all those (R, a) in 
Gn X Q for which 

dim[Nor(A, a) + R(En l {x: xi = O for i = k + 1, . , n})] < n 

has On< ?IHk =Hn(n-l)12+k measure 0, and the image of this set under the 
Lipschitzian map 

f; Gn X Q-> Gn X Ek, 

f(R, a) = (R, (pk o R 1)(a)) for (R, a) E Gn X Q, 

contains the set of all those (R, w) for which the above inclusion fails. Now 
apply 6.13 with B, m, k replaced by A, k, Q; in particular for i=O compare 
the resulting formula 
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490 HERBERT FEDERER [December 

f3(n, k)4k(A, Q) = f4 bo[A n Xn (RI w), Q]d(4n 0 Lk)(R, w) 
GnXEk 

with the formula 

fl(n, k)H (Q) = I H [Q n Xn (R, w)]d(4n 0 Lk)(R, w) 
nXEk 

obtained from 4.13 (3) and [F4, 5.14]. 
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