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0 Introduction

In [1] Tenenbaum, de Silva and Langford consider the problem of non-linear
dimensionality reduction: discovering intrinsically low-dimensional structures
embedded in high-dimensional data sets. They describe an algorithm, called
Isomap, and demonstrate its successful application to several real and syn-
thetic data sets.

In this paper, we discuss some of the theoretical claims for I[somap made in
[1]. In particular, we give a full proof of the asymptotic convergence theorem
referred to in that paper.

Isomap deals with finite data sets of points in R" which are assumed to lie on
a smooth submanifold M? of low dimension d < n. The algorithm attempts
to recover M given only the data points. A crucial stage in the algorithm
involves estimating the unknown geodesic distance in M between data points
in terms of the graph distance with respect to some graph G constructed on
the data points.

We show that the two distance metrics approximate each other arbitrarily
closely, as the density of data points tends to infinity. Main Theorem A
expresses this fact in terms of a sampling condition, and some conditions on
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the graph. This can be checked explicitly in any given situation. The qual-
ity of the approximation depends, in part, on certain geometric parameters
associated with the embedding of the submanifold.

Main Theorems B and C express this asymptotic convergence in probabilistic
terms. Suppose that the data points are chosen randomly, with a certain
density function a. We then seek theorems of the following form.

Asymptotic Convergence Theorem. Given A, Ao, p > 0, then for o
sufficiently large the inequalities

graph distance

1-N< <14 X

geodesic distance
hold with probability at least 1 — p.

The graph in question is constructed in one of two ways, according to either
an e-rule or a K-rule, which we discuss later.

The paper is organised as follows. In Section 1 we give precise definitions
of the set-up and of the various distance metrics considered. In Section 2,
we describe the “sampling condition” which leads to the 1 4+ Ay inequality in
our convergence theorems. In Section 3, we explain how certain geometric
parameters are involved in achieving the 1 — A; estimates. Main Theorem A
appears at the end of Section 3.

In Sections 4 and 5 we give proofs of the probabilistic versions, Main Theo-
rems B and C. Section 4 deals with the e-rule, and Section 5 generalises that
work to cover the K-rule, which requires more complicated arguments. In
both cases, we consider submanifolds M without intrinsic curvature, because
it is easy write down explicit formulas (of the kind cited in [1]). The case
when M is curved is not essentially different, but it becomes harder to write
down the required estimates explicitly.

In Section 6, we give an overview of how these results fit into the overall
Isomap framework. Finally, in an Appendix, we give the complete proof of
a geometric lemma used in Section 3.

1 Finite samples on submanifolds

Let M = M9 be a compact d-dimensional smooth submanifold of the Eu-
clidean space R". Boundary and boundary corners are permitted, so for
instance M may be a d-dimensional cube.



The natural Riemannian structure on M (induced from the Euclidean metric
on R™) gives rise to a manifold metric dy,; defined by:

du (2, y) = inf{length(y)}

where v varies over the set of (piecewise) smooth arcs connecting = to y in
M. Note that dy(z,y) is generally different from the Euclidean distance

[ = yll

Let {x;} C M be a finite set, whose elements we will refer to as “data points”
or “sample points”. These points may be chosen randomly, or obtained in
some other manner. The Isomap algorithm attempts to recover the manifold
distances dp(z;,2;), given only the data points {z;} C R". Of course, this
can only be done approximately.

The construction makes use of a graph G on the data points. Given such a
graph we can define two further metrics, just on the set of data points. Let
x,y belong to the set {z;}. We define:

dofe,y) = min(llzo — o[+ ..+ l|zpm1 — 2,

ds(z,y) = m}in (dp(xo, 1) + ..+ dp(zp_1,2p))

where P = (zo,...,x,) varies over all paths along the edges of G connecting
z (=) toy (= x,).

Given the data points and graph G, one can compute dg without knowledge
of the manifold M. This is a key stage in the Isomap algorithm. Since the
real goal is to estimate dj;, we must show that dg is a good approximation
to djps, under favourable circumstances.

The metric dg is an intermediate approximation. The proof that dg ~ das
falls naturally into two parts: dy; = dg and dg =~ dg.

Proposition 1. We have the inequalities:

Proof. The first expression is just the triangle inequality for the metric dy,.
The second inequality holds because the Euclidean distances ||z; — x;.1|| are
smaller than the arc-length distances dps(z;, it 1). O

Thus the main task will be to show that dg is not too much bigger than d,,
and that dg is not too much smaller than dg.



2 The sampling condition

There are simple conditions on the data set {z;} and the graph G which
guarantee that dg is a good approximation to dy,.

Theorem 2. Let € and § be positive, with 46 < €. Suppose:

1. The graph G contains all edges xy for which dy(x,y) < €.

2. For every point m in M there is a data point x; for which da(m,x;) <

J.

Then for all pairs of data points x,y we have

du(2,y) < ds(z,y) < (1 +46/€)dum(z,y)

We refer to the second condition in the theorem as the “d-sampling condi-
tion”.

Proof. Let v be any piecewise-smooth arc connecting x to y, with length
¢ = length(y). We will find a path from z to y along edges of G whose
length du (2o, 21) + ... + dy(zp—1,2,) is less than (1 + 46/€)¢. The right-
hand inequality will follow upon taking the infimum over ~.

If / < e— 26 then x and y are connected by an edge, which we can use as
our path.

If £ > e—26 we can write £ = by + (b1 + 01+ ...+ 1) + £y, where {; =€ — 20
and € — 20 > ly > (e — 26)/2. (There may be no ¢; terms if ¢ is small.)

Now cut up the arc v into pieces in accordance with this decomposition of
its length £. This gives us a sequence of points vy = z,71,...,7, = y along
v, which divide the length of v as indicated.

Each point 7; (for i = 1,...,p — 1) lies within distance § of a sample point
z;. We claim that the path zz,zs...2, 1y satisfies our requirements. We
estimate the length of each edge as follows:

du (@i, Tiv1) < du(@s, %) + du (Vi Y1) + dar(Vig, Tigr)
< d+46+9

; lie/ (e — 20)
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and similarly:

Loe/ (e — 20)
loe/ (e — 26)

dM(fU,fb"l)

<
dM(xpfla y) S

Since fye/(e — 20) < ¢, we find that each edge has length at most € and so
belongs to G. Adding the inequalities, we obtain:

le/(e — 20)

(1 +46/¢)

dyv(@o, 1) + ... + du(@p-1, ) <
<

The last step makes use of the general fact that 1/(1 —¢) < 1 4+ 2¢ when
0 <t < 1/2. This completes the proof. O

Thus we see that dg approximates d,; arbitrarily well, provided that the two
conditions (in particular the §-sampling condition) can be met.

3 Parameters of the manifold embedding

The assertion that ds & dg requires us to consider various parameters of the
embedded manifold.

The minimum radius of curvature 1o = ro(M) is defined by:

~ = max {50}

where v varies over all unit-speed geodesics in M and ¢ is in the domain D
of v. The second derivative is computed by regarding v as a map D — R”.

Any Euclidean sphere of radius ry has minimum radius of curvature equal
to 7o; in particular this is true of circles of radius ry contained in some 2-
dimensional plane. Intuitively, geodesics in M curl around “less tightly” than
circles of radius less than ro(M).

The minimum branch separation sy = so(M) is defined to be the largest
positive number for which ||z —y|| < s¢ implies dps(z,y) < 71, for z,y € M.

The existence of 7y and sq is guaranteed by the compactness of M. We now
make use of these quantities.



Lemma 3. If v is a geodesic in M connecting points x and y, and if £ =
length(y) < 7rq then:

2rgsin(£/2rg) < ||z —y|| < ¢

The right-hand inequality is just the fact that the line segment between z and
y is the shortest arc connecting x to y. The proof of the left-hand inequality,
which is somewhat technical, is deferred to the Appendix. Equality on the
left is achieved in the case where v is an arc of a circle of radius rg. Thus
Lemma 3 crystallises the notion that geodesics in M curl around less tightly
than circles of radius ryg.

Using the fact that sin(t) > ¢ —#3/6 for t > 0, we can write down a weakened
form of Lemma 3:
(1= 0/24rg)0 < |lz —yll < ¢

We make this change purely for cosmetic purposes; it makes it easy to see
that when 7 is small, all three terms are approximately equal.

There is also the “first-order” weakening
@/me <z —yll <4,
which is valid in the range ¢ < 7r.

We now have the main ingredients required to show dg ~ dg.

Corollary 4 Let A > 0 be given. Suppose the points x;,x;+1 in M satisfy the
conditions:

lz: — it < so

[z = ziall < (2/m)rov24X

Suppose also that there is a geodesic arc of length dp(z;, x;11) connecting x;
to x;11. Then:

(1 = Ndp (75, Tiv1) < || = i1 || < dpg(24, Tiga1)

Proof. The first assumption implies that ¢ = dy(x;, z;41) < 7. Since
we assume that this distance is represented by a geodesic arc, we can apply
Lemma 3. First of all we have

< (m/2)||zi — ziga || < roV24A,
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using the first-order approximation. It follows that 1 — X\ < 1 — ¢2/24r% and
so Lemma 3 implies the desired result. O

It is clear how Corollary 4 relates to the crucial inequality (1 — \)dg < dg <
dg, since ds and dg are defined in terms of lengths of geodesics and lengths of
straight line segments, respectively. However, one must be careful to ensure
that all relevant graph edges have a corresponding geodesic arc.

This last assumption is not always valid. If M is a convex domain in R™ with
a hole punched out of its interior, then points on opposite sides of the hole
are not connected by a shortest geodesic.

It is useful to have a criterion to identify when this assumption is valid. We
say that M is geodesically conver if any two points x,y in M are connected
by a geodesic of length dy/(z,y).

Examples. Convex domains in R" are geodesically convex, as are compact
Riemannian manifolds without boundary. In general, if M is a compact Rie-
mannian manifold, then M is geodesically convex if and only if its boundary
is convex, in an appropriate sense.

This notion can be put to use in theorems of the following kind.

Main Theorem A. Let M be a compact submanifold of R* and let {x;} be a
finite set of data points in M. We are given a graph G on {x;}, and positive
real numbers A\, Ay < 1. We also refer to positive real numbers €., €mas
and §. Suppose

1. The graph G contains all edges xy of length ||z — y|| < €min;
2. All edges of G have length ||z — y|| < €maz;

3. The data set {z;} satisfies the 6-sampling condition in M,

4. The submanifold M is geodesically conver.

Then, provided that

9. €maz < So, where sy is the minimum branch separation of M,

6. €maz < (2/m)ro\/24)\1, where 1o is the minimum radius of curvature of
M

)

7. 5 S )\QGmin/4,



it follows that the inequalities

are valid for all x,y in M.

The theorem gives us conditions for ensuring that dg =~ dj; to any given
degree of accuracy, by setting A; and A\, as small as required.

Proof. Since ||z — y|| < dm(z,y), condition 1 implies that G contains all
edges xy for which dy(z,y) < €min. We can therefore apply Theorem 2,
which with Proposition 1 gives

do(z,y) < ds(z,y) < (14 40/ €min)drr(z,y) < (14 Xo)du(z,v),

establishing the right-hand inequality.

To prove the left-hand inequality, choose a path zz; ...z, connecting x
(= zo) to y (= z,) along graph edges which minimises the total graph length.
The conditions on G' and ¢€,,,; imply that each pair z;,z;11 satisfies the
hypotheses of Corollary 4 with A = A;. Then:

dM(x, y) < dM($0a 331) +..+ dM(xp—la jUp)
< (I =2M) Mmoo =zl + o4+ (1= M) Hlmpor — 2|
= (1- Al)ildG(xay)
This establishes the left-hand inequality. O

Aside. It may seem that geodesic convexity is a much stronger condition
than we really need for our proof. We could say that M is e-geodesically con-
vex if whenever ||z — y|| < e there is a geodesic of length dj,(z,y) connecting
x to y. Taking € = €4, this is all that is required in the proof. Curiously
enough, it turns out that e-geodesic convexity implies full geodesic convexity
for a metrically complete manifold, such as a compact manifold, so nothing
is really gained by doing this.

4 Probabilistic bounds

In this section, we consider what happens when the data points {x;} are
chosen randomly and the graph G is determined explicitly according to an
e-rule or a K-rule (see below). In particular, we wish to show that the



conditions of Main Theorem A can be satisfied with high probability, when
there is a sufficiently high density of points.

First we discuss the random process. Let o : M — R, be any positive
real-valued function on M.

Convention. The sample set {z;} is chosen according to a Poisson process
with density function o, meaning that for any measurable subset A C M,

Pr(A contains exactly k points in {z;}) = e %a*/k!,

where a = [, a.

Under this convention, the expected number of points in A is just a. We write
Qmin and Qune, for the minimum and maximum values of o on the compact
manifold M.

Remark. The exact choice of random process is not especially significant,
since the arguments we use are quite general. The Poisson process is con-
structed so that disjoint regions behave independently of each other. Another
option would be to select N points independently from a fixed probability
distribution &. It is just as easy to use this process when formulating our re-
sults. In any case, when N is large, this is well-approximated by the Poisson
process with density o = Na.

We now describe the two graph constructions mentioned above.

Definition. The e-rule includes the edge zy in G whenever ||z — y|| < e, for
some chosen € > 0.

Definition. The K-rule includes the edge zy in G whenever y is one of the
K nearest neighbours of z (or vice versa); “nearest” in the Euclidean metric.

It turns out that the e-rule is easier to work with; conditions 1 and 2 of Main
Theorem A are automatically satisfied when €,,;, < € < €,42-

We will later establish that conditions 1 and 2 also hold (with high proba-
bility) for the K-rule, under suitable conditions. First we turn our attention
to condition 3, the J-sampling condition.

Sampling Lemma. Let u > 0, 6 > 0 be given, and suppose {z;} is a data
set in M chosen randomly with density function o. Then the d-sampling
condition s satisfied with probability at least 1 — u, provided that

Amin > 108(V/ 16Vinin(6/4)) [ Vinin (8/2).



Here V is the volume of M, and Vi (r) is defined to be the volume of the
smallest metric ball in M of radius r (with respect to du):

Vinin (1) = min Vol(By(r))

TEM

Note that the crucial lower bound V,,;, () is positive-valued, by compactness
of M.

Proof. We begin by covering M with a finite family of metric balls (with
respect to dys) of radius §/2. Choose the sequence of centers pi,po,... in
such a way that

pivs # U By, (6/2).

When this is no longer possible, the job is done. Meanwhile, note that
the smaller balls B, (§/4) are all disjoint (since no two of the p; are within
distance §/2 of each other). It follows that at most V/V},;,(0/4) points can
be chosen before the process necessarily terminates.

Now every x in M belongs to some ball B; = B,,(6/2). If we can show that
each ball B; contains a data point, then the d-sampling condition must be
satisfied, since the diameter of B; is at most d.

Now we can compute:

Pr(4-sampling condition holds) = Pr(no ball B; is empty)
= 1 — Pr(some ball B; is empty)

> 1 Z Pr(B; is empty)

Now

Pr(B; is empty) = exp(—/ @)
B;
S exp(_vmin(5/2)amin)

Since there are at most V/V,,;,(6/4) balls, we can finally estimate:

Pr(é-sampling condition holds) > 1 —Vinin (0/2) 0tmin)

.
 Vom(072) P

10



Simple algebraic manipulation shows that if «;,;, satisfies the condition in
the statement of the lemma, then the right hand side must be greater than
1— p. U

Remark. A similar result can be derived in the scenario where we sample
N points independently from the fixed probability distribution &. This time
the condition

ensures that the J-sampling condition holds with probability at least 1 — p.
The proof is virtually identical.

Before we can make effective use of the Sampling Lemma, we must say some-
thing about the bounds V(7).

First consider the case where M has no boundary.

1. If M is intrinsically flat, then balls of radius r look exactly like Eu-
clidean balls (at least, so long as r is small enough to ensure that no
ball overlaps itself). Thus we have the exact formula V., (r) = ngr¢,
where 7, is the volume of the unit ball in R?.

2. Even if M is not intrinsically Euclidean, it is true that very small balls
in M are almost Euclidean. In particular Vy,(r)/r® — n4 as 7 — 0.
If r is expected to be small, this indicates that it is reasonable to
approximate Vi, (1) ~ ngre.

3. On the other hand, strict lower bounds for V,,,;,,(r) may be derived us-
ing so-called “volume comparison theorems”, in terms of the minimum
radius of curvature r.

When M has boundary (but not corners), the situation is more complicated.

4. In the Euclidean case, metric balls B,(r) close to the boundary may
be sliced by the boundary. If the boundary is itself flat, then the worst
case is that half the ball will be missing.

5. If the boundary is not flat, it is still a reasonable first-order approxi-
mation to assume that Vol(B,(r)) > n4r?/2. This is true also when M
is not flat. Indeed, Vol(B,(r))/r® — n4r%/2 as r — 0 whenever z is a
boundary point of M.
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6. One may derive more complicated comparison theorems to give correct
lower bounds for V,,;,(r) in general. The curvature of the boundary
will necessarily appear as a parameter in these theorems.

On the other hand, it is not hard to argue that these complicated boundary
terms play comparatively small part in the workings of the Sampling Lemma.
The number of boundary balls in a covering by balls of radius r is of order
1/r%1, whereas the number of interior balls is of order 1/r?, as r — 0.

In the interests of simplicity, we will henceforth disregard boundary effects.
Correct modifications to the proofs can be found, if desired, by using Vi, (r)
in place of the Euclidean formula 7.

Main Theorem B. Let M be a compact submanifold of R* isometrically
equivalent to a conver domain in RY. Let i, Ay and p be given, and let € > 0
be chosen so that € < sy and € < (2/m)ro\/24X1. A sample data set {z;} is
chosen randomly from a Poisson distribution with density function o, and
the e-rule is used to construct a graph G on {z;}.

Suppose also that:

Omin > [log(V/puna(A2€/16)%)] /na(Xze/8)?,

Then, with probability at least 1 — p, and neglecting boundary effects, the
inequalities

(1=X)dp(z,y) <dg(z,y) < (14 N)dpy(z,y)

hold for all x,y in M.

Proof. This is a straightforward combination of Main Theorem 1 and the
Sampling Lemma. O

5 Extending Main Theorem B to the K-rule

In this section we will extend our results to cover the K-rule. What is new
is that conditions 1 and 2 in Main Theorem A are no longer automatically
satisfied. We will find high-probability guarantees for both conditions. Here
they are again:

1. The graph G contains zy as an edge whenever ||z — y|| < €min-
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2. All edges of G have length ||z — y|| < €mas

The intuitive idea may be described very simply. Consider a Poisson dis-
tribution in R? with constant density function o. The expected number
of points in a ball of radius ¢ is ang¢. Putting it another way, if we set
K +1 = angf? and construct a graph according to the K-rule, then we can
expect the maximum edge length at any given vertex to be around / (in the
manifold metric).

If we choose lpin < £ < L4z, then the neighbourhood B, () of the
data point x is likely to contain fewer than K other data points; and the
neighbourhood B, (4,,,,) is likely to contain more than K other data points.
If both of these things are true at z, then the K nearest-neighbour edges at
x will:

1. include all edges xy where ||z — y|| < €nin = (2/7)lmin;

2. not include any edge xy where ||z — y|| > €maz = Cmaz-

These are precisely the conditions we wish to prove, with high probability,
for all points x. Therefore the task is to bound the number of points in
B (Ymin), Bz(lmaz) below K + 1 and above K + 1 (respectively).

For a small fixed value of «, these bounds are not likely to be very effective.
However, we can let a tend to infinity. In order to keep the length scale €
fixed, we preserve the ratio (K+1)/«; so K also tends to infinity. Under these
circumstances the strong law of large numbers prevails, and the probability
that By (€min) contains too many points, or that B, ({,.,) contains too few
points, becomes exponentially small.

We now give the details of this argument, in greater generality. We return
to the setting of a smooth compact submanifold M C R", with data points
{z;} chosen at random according to a Poisson process with density function
«, which is bounded oy, < a < Qpeg-

The /4,,;, Theorem. Let ¢,,;, be chosen to satisfy:
amamvmaz(ngin) < (K + 1)/2

where Vipay (1) is the volume of the largest metric ball in M of radius r. Then,
with probability at least 1 — u, no ball By(byin) of radius Ly, contains more
than K + 1 data points. Here

v

— 4 (K+1)/2 ]

13



The /,,,, Theorem. Let {,,,, be chosen to satisfy:
ammem(ﬁmaw/Q) > Q(K -+ 1).

Then, with probability at least 1 — p, no ball By(lmaz) of radius g, contains
fewer than K + 1 data points. Here

Vv
— f(K+1)/4—'
a ¢ me (Zmam/4)

The proof of these results hinges on the following lemma, which quantifies
the strong law of large numbers (in this case, for the Poisson distribution).

Lemma (Chernoff bounds). If X is a random variable with Poisson
distribution with mean m, then for all t > 0

Pr(X > (1+t)m) < [(14_67;)14-7:]"1

and

Pr(X < (1=1t)m) <e ™72,

Proof. See [2]. O

In particular, we can deduce:

Pr(X >2m) < (e/4)™
Pr(X <m/2) < e ™8

€

Proof of ¢,,;, and /¢,,,, theorems.

To prove the 4,,;, theorem, we first cover M with metric balls of radius £,,;,.
As discussed previously, this requires at most V/Vyin(€min/2) balls. Let p
be one of the centers of these balls. Consider the ball B,(2¢,,,) of twice the
radius. The expected number of points in this ball is at most amaz Vinaz (2€min)
which by hypothesis is less than (K + 1)/2. Applying the Chernoff bound
we find that:

Pr(B,(20min) contains > K + 1 data points) < (e/4)K+1)/2
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Since each point = in M lies within 4,,;, of one of the centers p, it follows
that each ball By(¢min) is contained in some B,(2€,). Since there are at
most V/Viin(bmin/2) centers, we can estimate the error probability

v

Pr(Some By ({min) contains > K + 1 points) < (6/4)(K+1)/2m

as required.

Similarly, to prove the /,,,, theorem, we cover M with metric balls of radius
limaz /2, which requires at most V/Viin(fmaz/4) balls. Let p be one of the
centers of these balls. The expected number of points in B, (£,4,/2) is at least
Omin Vinin (Umaz/2) which by hypothesis is greater than 2(K + 1). Applying
the Chernoff bound we find that:

Pr(By(fmas/2) contains < K + 1 data points) < e~ (K+1/4

Now each point z in M lies in By(lmaez/2) for some p, and By(lmaz) D
By, (Yimaz/2). Since there are at most V/Viyin (€maz/4) centers, we can estimate
the error probability:

v

Pr(Some By ({ma;) contains < K + 1 points) < e_(K+1)/4m

This completes the proof of both theorems. [l
We can put these results together to obtain our main result for the K-rule.

Main Theorem C. Let M be a compact submanifold of R* isometrically
equivalent to a conver domain in R*. Let \i, Ay and p be given, and let
€ > 0 be chosen so that € < sy and € < (2/m)ro/24)\1. A sample data set
{z;} is chosen randomly from a Poisson distribution with density function c,
which has bounded variation A = Quuay/Cmin. Fiz the ratio

K+ 1 . T]d(G/Q)d
Qlmin B 2

and use the K-rule to construct a graph G on {z;}.

Suppose also that:

Cmin > [4 log(8V/,u77d()\26/327r)d)]/nd()\ge/167r)d,
and that:

—(Er/ pna(e/4)* /4V

pma(e/8)*/16AV

e
(6/4)(K+1)/2

IA N
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Then, with probability at least 1 — p, and neglecting boundary effects, the
nequalities

(I =X)dum(z,y) < dg(z,y) < (1+ Xo)du(w,y)

hold for all x,y in M.

Proof of Main Theorem C. Let €,,0; = {mez and let €, = Lmin- Note
that, by the first-order version of Lemma 3, for any p € M, the Euclidean
ball around p of radius €,,;, in the ambient space R" contains at most as
many points {z;} as By({min), provided that €p;, < so. Analogously, the
Euclidean ball around p or radius €,,,, in the ambient space R" contains at
least as many points {x;} as Bp({maz), provided that €m,q, < So.

Thus we can replace the ¢,,;, and £,,,, theorems by analogous €,,;, and €,
theorems. This is useful because the e- and K-rules are defined in terms of
Euclidean distances, and not manifold distances. From the first parts of the
L pnin and the ¢,,,. theorems we obtain the conditions:

277d(7r6min)d S (K + 1)/amaz

nd(emaw/Q)d

We might as well take equality in both conditions, which makes

emaw

min = o (4A) 14
(remembering that e = Amin)-

The theorem is now a straightforward combination of the Sampling Lemma,
the 4,,;, theorem and the /¢,,,, theorem. We obtain a lower bound on «,;,
to guarantee the Sampling Condition holds with probability at least 1 — u/2;
and lower bounds on K to obtain error probabilities of at most ;/4 in the
linin and ., theorems. We can write these bounds in terms of € = €,,4;.
The overall error probibilty is then at most /2 + u/4 + u/4 = p. O

6 Concluding Remarks

We close with a brief overview of how these results yield the guarantees
of asymptotic convergence described in the basic Isomap paper [1]. There
are two main claims in [1]: that dg converges asymptotically to djs, and
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therefore that Isomap asymptotically recovers the true structure for data
manifolds that are isometric to a convex domain of Euclidean space. We
consider each of these pieces in turn.

The claim that dg converges asymptotically to dj; is just a straightforward
application of our Theorems B and C. The specific bounds on the deviation of
dg from dj given in note 18 of [1] come from assuming zero intrinsic curvature
and a constant Poisson density & = aynin = Qumaz, and neglecting boundary
effects. These bounds can be extended to deal with intrinsic curvature and
boundary effects by deriving precise estimates on the quantities V,,;,(r) for
r > 0, as discussed in Section 4 following the proof of the Sampling Lemma.
Asymptotically, introducing intrinsic curvature does not change the fact that
when 7 is small, V,,;,(r) & ngr¢ (except on the boundary where V., (1) ~

nar®/2).

The assertion that Isomap asymptotically recovers the true structure of
intrinsically Euclidean data sets is really a statement about how the d-
dimensional Euclidean embedding Y produced by Isomap relates to a hy-
pothetical Euclidean configuration that can be thought of as the first stage
of a generative model of the data. We imagine that the data were generated
by first sampling points from V', a convex region of d-dimensional Euclidean
space, and then mapping those points isometrically (and in general, nonlin-
early) into a high-dimensional observation space X. The observed points
in X (or more properly, their distances dx) are then the inputs to Isomap,
and the goal of the algorithm is to invert the nonlinear isometric mapping
V — X. Let v; denote the coordinates of point 7 in the original Euclidean
space V', which we would like to recover, and let y; denote the coordinates
of 7 in the embedding produced by Isomap. Our claim is that in the limit
of infinitely many data points, the embedding coordinates {y;} produced by
applying MDS to any fixed finite set of points converge asymptotically to
their original coordinates {v;}, up to Euclidean isomorphism (translation,
rotation, scaling).

This claim rests on several properties of the algorithm for classical multi-
dimensional scaling (MDS), which serves as the final step of Isomap. MDS
takes as input the pairwise distances for a set of points and constructs a d-
dimensional Euclidean embedding that captures those distances as closely as
possible. When MDS is given as input actual Euclidean distances for a con-
figuration of points in a d-dimensional space, it will construct a d-dimensional
embedding that captures those distances perfectly and thereby recovers ex-
actly the original configuration of the points, up to isomorphism. In general,
any lower dimensional embedding will not capture the distances perfectly, so
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it is easy to detect that d is the true dimensionality of the data. Moreover,
MDS is continuous: small bounded variations in the input distances lead

to small bounded variations in the output embedding. These properties are
described in detail by Cox & Cox [3].

As established in this note, the second step of Isomap produces distance es-
timates dg that converge to the true geodesic distances d,,. If the original
coordinates {v;} were sampled from a convex Euclidean domain V', then the
geodesic distances d,; will be equal to the Euclidean distances in V. These
two facts guarantee that MDS (and hence Isomap) will asymptotically recover
the original Euclidean configuration of the data. We can obtain quantitative
bounds on how quickly the embedding coordinates {y;} converge to the orig-
inal coordinates {v;} by combining the bounds in our Main Theorems B or
C with the perturbation analysis of MDS on page 38 of [3].

Finally, we note that we have not said anything here about the ability
of Isomap to recover low-dimensional nonlinear geometry in the presence
of observation noise. Suppose that after being sampled from a convex d-
dimensional Euclidean domain V' and then isometrically embedded in the
n-dimensional observation space X, the data points are perturbed by some
low-amplitude isotropic noise process. We expect that the asymptotic result
of applying Isomap to this noisy data will be a “thickened” embedding, with
the top d embedding dimensions accounting for most of the variance in graph
distances and the bottom n—d dimensions accounting for some small residual
variance whose amplitude can be bounded in terms of the magnitude of the
noise. We leave a formal analysis of Isomap with noisy data to future work.
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Appendix: Proof of Lemma 3

Lemma 3 comes from the following fundamental estimate:

Minimum Length Lemma. Let 7 : [0,7] — R" be a smooth arc which is
parametrised by arc-length
I¥@)I =1

and which satisfies
15N < 1/r
for all t in [0, T]. Then for all 0 <t < 7r we have:

l7() = (0)I| = 2rsin(t/2r)

In fact, the Minimum Length Lemma is valid in the range 0 < ¢ < 277, but
we only require the restricted version of the lemma. For simplicity, that is
what we will prove.

We adopt the following proof strategy. The arc 7 is approximated by a
polygonal arc. The condition 4(¢f) < 1/r leads to upper bounds on the
change in angle from one edge to the next. We prove a polygonal version
of the Minimum Length Lemma which is stated in terms of these bounds.
Finally, we can make the approximation arbitrarily accurate, which gives us
the Minimum Length Lemma in the limit.

We begin by putting our approximations on a sound footing. Consider a
piece of the arc 7y of length £. More precisely, let z = v(t) and y = (¢t + £),
where 0 <t <t+/£<T.

Lemma 5. Let € > 0 be given. There exists & > 0 such that whenever we
have x and y as above with £ < § the following inequalities hold.

1. The Euclidean edge length ||y — z|| satisfies:
1 —e <l[ly—zl <¢
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2. The angle 0 between the vector y — x and the vector ¥(t) satisfies:

2(r —e)
The inequality ||y — z|| < £ is the familiar fact that straight line segments
are shortest.

Remark. We could spare ourselves the effort of proving Lemma 3 by using
instead the first inequality in Lemma 5, which is much easier to prove and
has the same general form. The main results of the paper can be derived
from Lemma 5, with slightly different explicit formulas. However we feel it is
worth carrying out the extra work needed to obtain the ‘correct’ estimates.

Proof of Lemma 5. The fundamental theorem of calculus gives us the
formula:

y—z = y(t+6—7()
t+e
= / ¥(a) da

t

= [0+ [w o
— G+ /t " /t "5(b) dbda

which leads to the estimate:

t+£ a
[y —=2) =&yl < /t /t|w(b)||dbda

< /:H /ta(w) db da

= 2/2r

When / is small this implies that the vectors y — x and £¥(t) are very close.
More precisely we have:

ly ==l > Nley@)| - ¢/2r
= 41— ¢/2r)

which immediately gives the first inequality, by taking § = 2re.
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Moreover, the angle # must be small when ¢ is small, since £?/2r is small
when compared to £. In more detail we can estimate:

sinf < [|(y —2) = Y@/ 165D
< (&)2n)/¢
¢/2r

Since (1 — €)@ < sinf for # close to zero, the second inequality in Lemma 5
also follows, for suitable §. O

We will now state and prove the required estimate for polygonal arcs. Af-
terwards we will show how to use Lemma 5 to deduce the Minimal Length
Lemma.

Polygonal Minimal Length Lemma. Let V = V,V; ...V, be a polygonal
arc in R", and let 0y, ...,0, be positive real numbers satisfying

91—|—...+9p<7r.
Suppose the angle at vertex V; satisfies the constraint
LViaViVipr 2 m — 0

fori=1,...,p. Let W = WoW; ... W, be a polygonal arc in R* with the same
edge lengths |[Wiz1 — Wil = ||[Vigr — Vil| and with angles ZW;_;W;W; 11 =
m — 0;, consistently oriented clockwise or anticlockwise. Then

Ve = Vol = [IW, — Wl

wth equality if and only if V lies in a plane and is isometrically equivalent to
wW.

Note that the angle constraints on V' can be combined in a simple way to
deduce the following inequalities:

LVoViVia
LVpViVip

01+---+0i—1
Oig1+...+0,

IAINA

These can be proved by induction; indeed
IWVoViiVi > (= ZWViiVig) — 0;
Sl0)
ZVoViVia T — ZVoViiVi
LVoVieaVica +0; 1
0+ ...+0; 9+0; 4

IA N IA
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as desired. The second inequality is similar.
We now begin the proof proper.

Proof of Polygonal Minimal Length Lemma. Fixing the starting edge
Vo V1 we note that we have a compact configuration space of paths V' satisfying
the given constraint. We can therefore assume that V' is minimising for the

function ||V, — V5|| and endeavour to prove that V' is isometrically equivalent
to W.

Butterfly Lemma. Let XQP and YQR be two triangles in R* of fized size
and shape, and common verter Q). Let &, n denote the angles £ = LZXQP,
n=ZLYQR. Suppose also that we have the constraint

/PQR>m—06

for some 6, where
E+0+n<m

Consider all configurations of triangles as above, with the same size and
shape. Then the distance ||Y — X|| is minimised if and only if the two tri-
angles lie in the same plane, the angle ZPQR equals m — 6, and the an-
gles ZXQP, ZYQR are contained in ZPQR (so in particular ZXQY =

T—&—0—n)

Assuming the Butterfly Lemma, we can now complete the proof. Suppose
V' is a minimising configuration. For any 0 < ¢ < p, consider the triangles
W ViVizi and V,V;Vii1. Since V' is minimising, this configuration of triangles
is minimising in the sense of the Butterfly Lemma, with § = 6;. We calculate:

E+0+n = ZWVViVia+0;+2V,ViVi
< 91+...+9i_1+91-+0i+1+...+0p
< 7

so the Butterfly Lemma applies. We deduce that all five points Vg, Vi_1, V;,
Vit1, Vp lie in the same plane, that the angle ZV;_1V;V; 1 equals m — 6;, and
that ZVyViVi_q, ZV,V;Viq1 are interior to ZV;_1V;Viy,.

Since this is true for every 0 < ¢ < p, it follows that V is isometrically
equivalent to W. This completes the proof of the Polygonal Minimal Length
Lemma, modulo the Butterfly Lemma. U

Proof of Butterfly Lemma. It is equivalent to consider the problem of
minimising the angle ZXQY, since the lengths X @, QY are fixed. Let z, p,
r, y be points in the unit sphere S™ ! corresponding to the vector directions
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(X=-Q), (P-Q), (R—Q), (Y —Q) respectively, and let p denote the antipodal
point to p. Angles at () can now be represented as geodesic distances in the
sphere:

ZXQY = d(z,y)
/XQP = d(z,p)
ZYQR = d(y,r)
/ZPQR = d(p,r)

The constraint on ZPQR may be interpreted as:
d(r,p) <0

We can now put this all together. By the triangle inequality for S™~! we
know that

d(p,p) < d(p,z) + d(z,y) + d(y,r) + d(r,p)

with equality precisely when z, y, r lie (in that order) along a minimising
geodesic arc from p to p. Thus:

T <&+ d(z,y) +n+d(r, D)

It follows that d(z,y) > m — £ — @ — n with equality precisely when pzyrp is
a minimising geodesic and d(r, p) = 6. Such a geodesic certainly exists when
&40 +n <. All the conclusions stated in the lemma now follow. U

We are now in a position to prove the main result.

Proof of Minimum Length Lemma Let v : [0,7] — R" be an arc of
length 7', with ||¥(¢)|| = 1 and ||%(¢)|| < 1/r for all .

We may assume that T < 7r. (The case T = nr follows by continuity).
In fact, assume that T < 7(r — €) for some € > 0. Let 6 = d(¢) be as in
Lemma 5.

Choose a large integer p and let £ = T'/p. Assume p is large enough to ensure
that £ < 6. Let U = UpUy, ... U, be the polygonal arc in R* with U; = (/).

By Lemma 5 we have a uniform lower bound 7 — ¢/2(r — €) on the angles
ZU;—1U;U;y1. By assumption, pf/2(r — €) < 7, so the Polygonal Minimal
Length Lemma will apply.

Before we use the lemma, let us first modify U. Consider the polygonal arc
V = WVi...V, constructed so that V;.; — V; is parallel to U;;; — U; and
rescaled to have length /.
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Applying the Polygonal Minimal Length Lemma, we find that ||V, — V5| >
|W, — Ws||, where W = W,W, ... W, is a polygonal arc in the plane with
equal edges of length ¢ and exterior angles of size £/2(r — ¢).

Now we can allow € to tend to zero. Using Lemma 5, we find that V, =V}
converges to y(T) — v(0). By inspection, or by using Lemma 5, we find that
W, — W, converges to a chord in a circle of radius r spanning an arc of length
T. This completes the proof. O

Remark. We expect that there is a shorter proof of the Minimum Length
Lemma using calculus.
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