Lecture 9 - Feb 4th, 2014
Inst. Mark Iwen
Scribe: Ruochuan Zhang

1 Last time

Theorem 1. Let $h(\vec{x})=\left\lfloor\frac{\langle\vec{y}, \vec{x}>+u}{w}\right\rfloor$, for $\vec{y} \sim N\left(0, I_{D \times D}\right)$, $u \sim U([0, w])$, and $w \in \mathbb{R}^{+}$. Let $r \in \mathbb{R}^{+}, c \in(1, \infty)$. Then h is a LSH function with respect to l_{2} - distance. It has

$$
p_{1}=p_{w}(r)>p_{2}=p_{w}(c r)
$$

where
$p_{w}(n)=\operatorname{erf}\left(\frac{w}{\sqrt{2} n}\right)+\sqrt{\frac{2}{\pi}} \frac{n}{w}\left[e^{-\left(\frac{w}{\sqrt{2} n}\right)^{2}}-1\right]$

2 This time

- Let $h: \mathbb{X} \rightarrow \mathbb{Z}$ be a $L S H$ function for metric $d(\cdot, \cdot)$

1) $d(\vec{x}, \vec{y})<r \Rightarrow \mathbb{P}[h(\vec{x})=h(\vec{y})] \geq p_{1}$
2) $d(\vec{x}, \vec{y}) \geq r c \Rightarrow \mathbb{P}[h(\vec{x})=h(\vec{y})] \leq p_{2}<p_{1}$

Definition 1. Let $g_{k}: \mathbb{X} \rightarrow \mathbb{Z}^{k}$ be a locally sensitive hash function created via k i.i.d. LSH functions $h_{1}, h_{2}, \ldots h_{k}$ defined by $g_{k}(\vec{x})=\left(h_{1}(\vec{x}), h_{2}(\vec{x}), \ldots h_{k}(\vec{x})\right)$
Definition 2. $g_{k}: \mathbb{X} \rightarrow \mathbb{Z}^{k}$ will be "good" for a $\vec{x} \in \mathbb{X}$ if
(1) $g(\vec{x}) \neq g(\vec{y}) \quad \forall \vec{y} \in \mathbb{X}$ with $d(\vec{x}, \vec{y}) \geq r c$
(2) $g(\vec{x})=g(\vec{y}) \quad$ for at least one $\vec{y} \in \mathbb{X}$ with $d(\vec{x}, \vec{y}) \leq r$

Definition 3. For $\vec{x} \in \mathbb{X}$, let $\vec{x}^{*}=\arg \min _{\vec{y} \in \mathbb{X}-\{\vec{x}\}}(d(\vec{x}, \vec{y}))$
Fix $\vec{x} \in \mathbb{X}$. Note that

$$
\begin{aligned}
\mathbb{P}[(1) \text { fails for } \vec{x} \in \mathbb{X}] & \leq(|\mathbb{X}|-1) \mathbb{P}\left[g_{k}(\vec{x})=g_{k}(\vec{y}) \text { for some } \vec{y} \in \mathbb{X} \text { with } d(\vec{x}, \vec{y}) \geq r c\right] \\
& \leq(|\mathbb{X}|-1) p_{2}^{k}
\end{aligned}
$$

$$
\begin{aligned}
\mathbb{P}[(2) \text { fails for } \vec{x} \in \mathbb{X}] & \leq 1-\mathbb{P}\left[g_{k}(\vec{x})=g_{k}\left(\overrightarrow{x^{*}}\right) \text { and } d\left(\vec{x}, \overrightarrow{x^{*}}\right)<r\right] \\
& \leq 1-p_{1}^{k}
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
\mathbb{P}\left[g_{k} \text { is "good" for } \vec{x} \in \mathbb{X}\right] & \geq 1-\mathbb{P}[(1) \text { fails }]-\mathbb{P}[(2) \text { fails }] \\
& \geq p_{1}^{k}-(|\mathbb{X}|-1) p_{2}^{k} \\
& \geq p_{1}^{k}\left(1-|\mathbb{X}|\left(p_{2} / p_{1}\right)^{k}\right)
\end{aligned}
$$

Setting $k=\log _{\frac{p_{1}}{p_{2}}}(2|\mathbb{X}|),\left(\frac{p_{1}}{p_{2}}>1\right)$, we see that

$$
\begin{aligned}
\mathbb{P}\left[g_{k} \text { is good for } \vec{x} \in \mathbb{X}\right] & \geq \frac{1}{2} p_{1}^{\log _{1}^{p_{1}}(2|\mathbb{X}|)} \\
& =\frac{1}{2}(2|\mathbb{X}|)^{\frac{\rho}{\rho-1}}
\end{aligned}
$$

where $\rho:=\frac{\log p_{1}}{\log p_{2}}$. (Note $\left.\rho<1\right)$. We have just proven the following lemma
Lemma 1. If we set $k \geq \log _{\frac{p_{1}}{p_{2}}}(2|\mathbb{X}|)$, then g_{k} will be good for $\vec{x} \in \mathbb{X}$ with probability at least $\frac{1}{2}(2|\mathbb{X}|)^{\frac{\rho}{\rho-1}}$

The next lemma bounds the number of i.i.d. hash functions, g_{k}, one must pick before one can be sure that at every element of \mathbb{X} will have a "good" LSH function.

Lemma 2. If we generate

$$
L \geq 2(2|\mathbb{X}|)^{\frac{\rho}{1-\rho}} \cdot \log \left(\frac{|\mathbb{X}|}{1-\sigma}\right) \quad \text { i.i.d. }
$$

hash functions $g_{k}^{j}: \mathbb{X} \rightarrow \mathbb{Z}^{k}, j=1, \ldots, L$, with $k \geq \log _{\frac{p_{1}}{p_{2}}}(2|\mathbb{X}|)$, then the following will hold with probability at least σ :
$\forall \vec{x} \in \mathbb{X} \exists l \in[L]$ s.t. g_{k}^{l} is a "good" LSH function for $\vec{x} \in \mathbb{X}$.
Proof. Let $\delta=\frac{1}{2}\left(\frac{1}{2|\mathbb{X}|}\right)^{\frac{\rho}{1-\rho}}$ and fix $\vec{x} \in \mathbb{X}$. All $g_{k}^{1}, \ldots, g_{k}^{L}$ will fail to be good for \vec{x} with probability $\leq(1-\delta)^{L} \leq e^{-\delta L} \leq e^{\log \left(\frac{1-\sigma}{|\mathbb{X}|}\right)}=\frac{(1-\sigma)}{|\mathbb{X}|}$.
The result now follows from a union bound over all $\vec{x} \in \mathbb{X}$.

- We can now solve the $(c, r)-N N$ (Nearest Neighbor) problem using these $g_{k}^{l}, l=1, \ldots, L$.
- Let $\mathbb{X}=\left\{\overrightarrow{x_{1}}, \ldots, \overrightarrow{x_{P}}\right\} \subseteq \mathbb{R}^{D}$ and $d(\vec{x}, \vec{y})=\|\vec{x}-\vec{y}\|_{2}$

2.1 Algorithm

1. For each $\overrightarrow{x_{j}} \in \mathbb{X}$
2. compute $g_{k}^{l}\left(\overrightarrow{x_{j}}\right)$ for $l=1, \ldots, L$.
3. end for
4. Set $f\left(\overrightarrow{x_{j}}\right)=(\infty, \ldots, \infty)$ for $j=1, \ldots, P$
5. For each $g_{k}^{l}, l=1, \ldots, L$
6. For each $n \in g_{k}^{l}(\mathbb{X}) \subseteq \mathbb{Z}^{k}$, with $\left|\left(g_{l}^{k}\right)^{-1}(n)\right| \geq 2$ (at least two \mathbb{X} elements hashed to n)
7. For each $\vec{x} \in\left(g_{k}^{l}\right)^{-1}(n)$, choose $\vec{y} \neq \vec{x}, \vec{y} \in\left(g_{k}^{l}\right)^{-1}(n)$
8. If $\|\vec{x}-\vec{y}\|<\min \left\{c r,\|\vec{x}-f(\vec{x})\|_{2}\right\}$
9. $\operatorname{set} f(\vec{x})=\vec{y}$
10. end for
11. end for
12. end for

The runtime from 1 to 3 is $O(P L k D)$
The runtime of 4 is $O(P)$
The runtime of lines 7 through 10 is $O\left(D\left|\left(g_{k}^{l}\right)^{-1}(n)\right|\right)$
The runtime from 6 to 11 is $O(D P)$
The runtime from 5 to 12 is $O(D P L)$

This algorithm is GOOD if it beats the simple $O\left(P^{2} D\right)$ - time NN algorithm.

The total runtime is : $O\left(P D\left(\log _{\frac{p_{1}}{p_{2}}} 2 P\right) 2(2 P)^{\frac{\rho}{1-\rho}} \log \left(\frac{P}{1-\sigma}\right)\right)$.
If $\frac{\rho}{1-\rho}<1$, we are faster!

Theorem 2. Choose $\sigma \in(0,1)$, let $\mathbb{X}=\left\{\vec{x}, \ldots, \overrightarrow{x_{P}}\right\} \subseteq \mathbb{R}^{D}$. Then the $(c, r)-N N$ problem can be solved for \mathbb{X} w.r.t. Euclidean distance with probability at least σ in

$$
O\left(D(2 P)^{\frac{\rho}{1-\rho}+1} \cdot \log \left(\frac{P}{1-\sigma}\right) \cdot \log _{\frac{p_{1}}{p_{2}}}(2 P)\right)-\text { time }
$$

3 Homework

6. Let $f_{N N}(\vec{x})=\arg \min _{\vec{y} \in \mathbb{X}-\{\vec{x}\}}\|\vec{y}-\vec{x}\|_{2}$ and set $\Delta:=\left(\min _{\vec{x} \in \mathbb{X}} \|\left(f_{N N}(\vec{x})-\vec{x} \|_{2}\right) /\left(\max _{\vec{x} \in \mathbb{X}} 2\|\vec{x}\|_{2}\right)\right.$, Prove that we can compute a function $f_{N N}^{A}: \mathbb{X} \rightarrow \mathbb{X}$, satisfying

$$
\left\|\vec{x}-f_{N N}^{A}(\vec{x})\right\|_{2} \leq 4\left\|\vec{x}-f_{N N}(\vec{x})\right\|_{2}, \quad \forall \vec{x} \in \mathbb{X}
$$

with probability $\geq \sigma$ in time

$$
O\left(D(2|\mathbb{X}|)^{\frac{3}{2}} \cdot \log \left(\frac{|\mathbb{X}| \cdot \log _{4 / 3}\left(\Delta^{-1}\right)}{1-\sigma}\right) \cdot \log _{3 / 2}(2|\mathbb{X}|) \cdot \log _{4 / 3}\left(\Delta^{-1}\right)\right)
$$

References

[1] Piotr Indyk, Rajeev Motwani. Approximate Nearest Neighbors: Towards Removing the Curse of Dimensionality. Proceeding STOC '98 Proceedings of the thirtieth annual ACM symposium on Theory of computing, Pages 604-613, 1998.

