MTH 995-003: Intro to CS and Big Data Spring 2014

Lecture 9 — Feb 4th, 2014
Inst. Mark Iwen Scribe: Ruochuan Zhang

1 Last time

Theorem 1. Let h(7) = |<E2F | for 7 ~ N(0,Ipxp), u ~ U([0,w]), and w € R*. Let
re Rt ce (1,00). Then h is a LSH function with respect to ly - distance. It has

P1 = Pw(r) > p2 = puw(er)

where
puln) = erf (&) + (/22 [1]
2 This time

e Let h: X — Z be a LSH function for metric d(-,-)
1) d(Z,) <r = P[h(Z) = h(H)] = p
2) d(Z,4) = re = P[A(T) = h(i)] < p2 < p1

Definition 1. Let g, : X — ZF be a locally sensitive hash function created via k i.i.d. LSH functions
B, has oy, defined by (@) = (h1(F), ha(), ...h())

Definition 2. g; : X — ZF will be “good” for a & € X if
(1) 9(%) # g(y) Yy € X with d(Z,) > rc
(2) g(¥) = g(y) for at least one § € X with d(Z,7) < r

—

Definition 3. For ¥ € X, let ©* = arg mingex_{g}(d(:f, 9))

Fix # € X. Note that

(IX| = DP [gr(Z) = gr(¥) for some § € X with d(Z,y) > rc]
(1X] = 1)p5

P[(1) fails for & € X]

P[(2) fails for Z € X] 1 — P [gi() = ge(z*) and d(Z,2*) < 1|

<
< 1-pb

Therefore,

P gk is “good” for Z€X| > 1-P[(1) fails] — P[(2) fails]
> pi = (%] - 1)k

> pf (1= Xl(2/p0)")
Setting k = logr (2|X]), (% > 1) , we see that
p2

1 logri (2X])
Plgy is good for T€X] > op ™

1 e
= —(2|X])r1
(2IX))7
where p := %. (Note p < 1). We have just proven the following lemma

Lemma 1. If we set k > logr (2|X]), then g will be good for ¥ € X with probability at least
P2
o
3 (2[X[)7T

The next lemma bounds the number of i.i.d. hash functions, gi, one must pick before one can be
sure that at every element of X will have a “good” LSH function.

Lemma 2. If we generate

L>2(2[X)T7 - log <’X|) iid.
1—0

hash functions gi X = ZF, j =1,...,L, with k > logrs (2|X|), then the following will hold with
P
probability at least o: ’

Vi eX A € [L] s.t. gt is a “good” LSH function for & € X.

P

Proof. Let § = % (ﬁ) 7 and fix 7 € X. All gi, ...,g,f will fail to be good for & with probability

< (-9 et < M%) = 0o

The result now follows from a union bound over all ¥ € X. O

e We can now solve the (c,7) — NN (Nearest Neighbor) problem using these gt, [=1,..., L.

o Let X = {#1,...,7p} CRP and d(&, %) = |7 —]2

2.1 Algorithm

1. For each 7} € X

2. compute gﬁc(az_}) forl=1,...,L.

3. end for

4. Set f(zj) = (00, ...,00) for j =1,..., P

5. For each g,é, l=1,..,L

6. For each n € g} (X) C ZF, with |(gF)~(n)| > 2 (at least two X elements hashed to n)
7. For each & € (¢g})~%(n), choose § # %, § € (gL) "1 (n)

s It |7 - g < minfer, 17— f(@)la}

9 set f(Z) =7

10. end for

11. end for

12. end for

The runtime from 1 to 3 is O(PLkD)

The runtime of 4 is O(P)

The runtime of lines 7 through 10 is O (D|(g}) "' (n)|)
The runtime from 6 to 11 is O (DP)

The runtime from 5 to 12 is O(DPL)

This algorithm is GOOD if it beats the simple O(P2D) - time NN algorithm.
The total runtime is : O (PD (10gﬂ 2P) 2(2P)ITPP log(%)).

p2
If fpp < 1, we are faster!

Theorem 2. Choose o € (0,1), let X = {&,...,ap} C RP. Then the (c,r) — NN problem can be
solved for X w.r.t. Fuclidean distance with probability at least o in

o P
O <D(2P)1PPJrl -log <> . 10gm(2P)> — time
1—0 P2

3 Homework

6. Let fyn(Z) = arg Mingex_ (7} |7 — Z||2 and set A := (mingex || (fnvn (%) — Z|2)/(maxzex 2[|Z]]2),
Prove that we can compute a function fj\“, N X — X, satisfying

17— [N @2 < 41T — fyn (@2, VT EX

with probability > ¢ in time

3 -lo AL
O(D(2|X|)2-log<|x| B4/s(>>.10g3/2<2|xp.1og4/3<A—1>>.

1—0c

References

[1] Piotr Indyk, Rajeev Motwani. Approximate Nearest Neighbors: Towards Removing the Curse
of Dimensionality. Proceeding STOC 98 Proceedings of the thirtieth annual ACM symposium
on Theory of computing, Pages 604-613, 1998.

