MTH 995-003: Intro to CS and Big Data

Spring 2014

Lecture 9 — Feb 4th, 2014

Inst. Mark Iwen

Scribe: Ruochuan Zhang

1 Last time

Theorem 1. Let $h(\vec{x}) = \lfloor \frac{\langle \vec{y}, \vec{x} \rangle + u}{w} \rfloor$, for $\vec{y} \sim N(0, I_{D \times D})$, $u \sim U([0, w])$, and $w \in \mathbb{R}^+$. Let $r \in \mathbb{R}^+, c \in (1, \infty)$. Then h is a LSH function with respect to l_2 - distance. It has

$$p_1 = p_w(r) > p_2 = p_w(cr)$$

where $p_w(n) = \operatorname{erf}\left(\frac{w}{\sqrt{2n}}\right) + \sqrt{\frac{2}{\pi}} \frac{n}{w} \left[e^{-\left(\frac{w}{\sqrt{2n}}\right)^2} - 1 \right]$

2 This time

• Let $h : \mathbb{X} \to \mathbb{Z}$ be a LSH function for metric $d(\cdot, \cdot)$ 1) $d(\vec{x}, \vec{y}) < r \Rightarrow \mathbb{P}[h(\vec{x}) = h(\vec{y})] \ge p_1$ 2) $d(\vec{x}, \vec{y}) \ge rc \Rightarrow \mathbb{P}[h(\vec{x}) = h(\vec{y})] \le p_2 < p_1$

Definition 1. Let $g_k : \mathbb{X} \to \mathbb{Z}^k$ be a locally sensitive hash function created via k i.i.d. LSH functions $h_1, h_2, \dots h_k$ defined by $g_k(\vec{x}) = (h_1(\vec{x}), h_2(\vec{x}), \dots h_k(\vec{x}))$

Definition 2. $g_k : \mathbb{X} \to \mathbb{Z}^k$ will be "good" for a $\vec{x} \in \mathbb{X}$ if (1) $g(\vec{x}) \neq g(\vec{y}) \quad \forall \vec{y} \in \mathbb{X}$ with $d(\vec{x}, \vec{y}) \ge rc$ (2) $g(\vec{x}) = g(\vec{y}) \quad \text{for at least one } \vec{y} \in \mathbb{X}$ with $d(\vec{x}, \vec{y}) \le r$

Definition 3. For $\vec{x} \in \mathbb{X}$, let $\vec{x}^* = \arg \min_{\vec{y} \in \mathbb{X} - \{\vec{x}\}} (d(\vec{x}, \vec{y}))$

Fix $\vec{x} \in \mathbb{X}$. Note that

 $\mathbb{P}\left[(1) \text{ fails for } \vec{x} \in \mathbb{X}\right] \leq (|\mathbb{X}| - 1) \mathbb{P}\left[g_k(\vec{x}) = g_k(\vec{y}) \text{ for some } \vec{y} \in \mathbb{X} \text{ with } d(\vec{x}, \vec{y}) \ge rc\right] \\ \leq (|\mathbb{X}| - 1) p_2^k$

$$\mathbb{P}\left[(2) \text{ fails for } \vec{x} \in \mathbb{X}\right] \leq 1 - \mathbb{P}\left[g_k(\vec{x}) = g_k(\vec{x^*}) \text{ and } d(\vec{x}, \vec{x^*}) < r\right]$$
$$\leq 1 - p_1^k$$

Therefore,

$$\mathbb{P}\left[g_k \text{ is "good" for } \vec{x} \in \mathbb{X}\right] \geq 1 - \mathbb{P}[(1) \text{ fails}] - \mathbb{P}[(2) \text{ fails}]$$
$$\geq p_1^k - (|\mathbb{X}| - 1)p_2^k$$
$$\geq p_1^k \left(1 - |\mathbb{X}|(p_2/p_1)^k\right)$$

Setting $k = \log_{\frac{p_1}{p_2}}(2|\mathbb{X}|), \left(\frac{p_1}{p_2} > 1\right)$, we see that

$$\mathbb{P}\left[g_k \text{ is good for } \vec{x} \in \mathbb{X}\right] \geq \frac{1}{2} p_1^{\log \frac{p_1}{p_2}(2|\mathbb{X}|)}$$
$$= \frac{1}{2} (2|\mathbb{X}|)^{\frac{\rho}{\rho-1}}$$

where $\rho := \frac{\log p_1}{\log p_2}$. (Note $\rho < 1$). We have just proven the following lemma

Lemma 1. If we set $k \geq \log_{\frac{p_1}{p_2}}(2|\mathbb{X}|)$, then g_k will be good for $\vec{x} \in \mathbb{X}$ with probability at least $\frac{1}{2}(2|\mathbb{X}|)^{\frac{\rho}{\rho-1}}$

The next lemma bounds the number of i.i.d. hash functions, g_k , one must pick before one can be sure that at every element of X will have a "good" LSH function.

Lemma 2. If we generate

$$L \ge 2(2|\mathbb{X}|)^{\frac{\rho}{1-\rho}} \cdot \log\left(\frac{|\mathbb{X}|}{1-\sigma}\right) \quad i.i.d.$$

hash functions $g_k^j : \mathbb{X} \to \mathbb{Z}^k$, j = 1, ..., L, with $k \ge \log_{\frac{p_1}{p_2}}(2|\mathbb{X}|)$, then the following will hold with probability at least σ :

 $\forall \vec{x} \in \mathbb{X} \exists l \in [L] \text{ s.t. } g_k^l \text{ is a "good" LSH function for } \vec{x} \in \mathbb{X}.$

Proof. Let $\delta = \frac{1}{2} \left(\frac{1}{2|\mathbb{X}|} \right)^{\frac{\rho}{1-\rho}}$ and fix $\vec{x} \in \mathbb{X}$. All g_k^1, \dots, g_k^L will fail to be good for \vec{x} with probability $\leq (1-\delta)^L \leq e^{-\delta L} \leq e^{\log\left(\frac{1-\sigma}{|\mathbb{X}|}\right)} = \frac{(1-\sigma)}{|\mathbb{X}|}.$ The result now follows from a union bound over all $\vec{x} \in \mathbb{X}$.

- We can now solve the (c, r) NN (Nearest Neighbor) problem using these g_k^l , l = 1, ..., L.
- Let $\mathbb{X} = \{\vec{x_1}, ..., \vec{x_P}\} \subseteq \mathbb{R}^D$ and $d(\vec{x}, \vec{y}) = \|\vec{x} \vec{y}\|_2$

2.1 Algorithm

1. For each $\vec{x_j} \in \mathbb{X}$ compute $g_k^l(\vec{x_j})$ for l = 1, ..., L. 2.3. end for 4. Set $f(\vec{x_j}) = (\infty, ..., \infty)$ for j = 1, ..., P5. For each $g_k^l, l = 1, ..., L$ For each $n \in g_k^l(\mathbb{X}) \subseteq \mathbb{Z}^k$, with $|(g_l^k)^{-1}(n)| \ge 2$ (at least two \mathbb{X} elements hashed to n) 6. For each $\vec{x} \in (g_k^l)^{-1}(n)$, choose $\vec{y} \neq \vec{x}, \, \vec{y} \in (g_k^l)^{-1}(n)$ 7. If $\|\vec{x} - \vec{y}\| < \min\{cr, \|\vec{x} - f(\vec{x})\|_2\}$ 8. 9. set $f(\vec{x}) = \vec{y}$ 10. end for 11. end for 12. end for

The runtime from 1 to 3 is O(PLkD)

The runtime of 4 is O(P)

The runtime of lines 7 through 10 is $O\left(D\left|(g_k^l)^{-1}(n)\right|\right)$

The runtime from 6 to 11 is O(DP)

The runtime from 5 to 12 is O(DPL)

This algorithm is GOOD if it beats the simple $O(P^2D)$ - time NN algorithm.

The total runtime is : $O\left(PD\left(\log_{\frac{p_1}{p_2}}2P\right)2(2P)^{\frac{\rho}{1-\rho}}\log(\frac{P}{1-\sigma})\right).$

If $\frac{\rho}{1-\rho} < 1$, we are faster!

Theorem 2. Choose $\sigma \in (0,1)$, let $\mathbb{X} = \{\vec{x}, ..., \vec{x_P}\} \subseteq \mathbb{R}^D$. Then the (c,r) - NN problem can be solved for \mathbb{X} w.r.t. Euclidean distance with probability at least σ in

$$O\left(D(2P)^{\frac{\rho}{1-\rho}+1} \cdot \log\left(\frac{P}{1-\sigma}\right) \cdot \log_{\frac{p_1}{p_2}}(2P)\right) - time$$

3 Homework

6. Let $f_{NN}(\vec{x}) = \arg\min_{\vec{y} \in \mathbb{X} - \{\vec{x}\}} \|\vec{y} - \vec{x}\|_2$ and set $\Delta := (\min_{\vec{x} \in \mathbb{X}} \|(f_{NN}(\vec{x}) - \vec{x}\|_2)/(\max_{\vec{x} \in \mathbb{X}} 2\|\vec{x}\|_2)$, Prove that we can compute a function $f_{NN}^A : \mathbb{X} \to \mathbb{X}$, satisfying

$$\|\vec{x} - f_{NN}^{A}(\vec{x})\|_{2} \le 4\|\vec{x} - f_{NN}(\vec{x})\|_{2}, \quad \forall \vec{x} \in \mathbb{X}$$

with probability $\geq \sigma$ in time

$$O\left(D(2|\mathbb{X}|)^{\frac{3}{2}} \cdot \log\left(\frac{|\mathbb{X}| \cdot \log_{4/3}(\Delta^{-1})}{1-\sigma}\right) \cdot \log_{3/2}(2|\mathbb{X}|) \cdot \log_{4/3}(\Delta^{-1})\right).$$

References

[1] Piotr Indyk, Rajeev Motwani. Approximate Nearest Neighbors: Towards Removing the Curse of Dimensionality. *Proceeding STOC '98 Proceedings of the thirtieth annual ACM symposium on Theory of computing*, Pages 604-613, 1998.