1 Overview

In this lecture, we begin a probablistic method for approximating the Nearest Neighbor problem by way of a locality sensitive hash function. We compute the two probabilities for the relevant hash function.

2 Problem

Given $r \in \mathbb{R}^{+}, c>1$, and $\mathbb{X}:=\left\{\vec{x}_{1}, \ldots, \vec{x}_{P}\right\} \subset \mathbb{R}^{D}$, compute

$$
f:[P] \rightarrow[P] \cup\{-1\}
$$

such that

1. $d\left(\vec{x}_{j}, \vec{x}_{f(j)}\right) \leq c \cdot r$ for all $j \in[P]$ such that $\exists j \neq i \in[P]$ with $d\left(\vec{x}_{j}, \vec{x}_{i}\right) \leq r$; and
2. $f(j)=-1$ if there does not exist $j \neq i \in[P]$ with $d\left(\vec{x}_{j}, \vec{x}_{i}\right) \leq c \cdot r$.

Remark 1 The above can easily be generalized to arbitrary metric spaces, where d is the metric, but in the following, we will focus on \mathbb{R}^{D} with d being the Euclidean 2-norm.

Remark 2 This is known as the (c, r) - Nearest Neighbor Problem. Note that (1) and (2) do not uniquely determine a function, and moreover, it is possible that $\vec{x}_{f(j)}$ is not the nearest neighbor to \vec{x}_{j} (see Figure 1). Hence, such an f is an approximation to the standard Nearest Neighbor problem.

3 Naive Solution

1. Compute every pairwise distance $\left\|\vec{x}_{j}-\vec{x}_{i}\right\|_{2}, i \neq j$. This takes $\mathcal{O}\left(P^{2} D\right)$-time.
2. Output the index of the closest point to each \vec{x}_{j} as $f(j)$.

Clearly such an f gives an exact solution to the Nearest-Neighbor problem, and thus also satisfies (1) and (2) in the Problem statement. We wish to approximate this Naive solution with better runtime than $\mathcal{O}\left(P^{2} D\right)$.

Figure 1: Ambiguity of f

4 Idea

Project $\vec{x}_{1}, \ldots, \vec{x}_{p}$ onto a 'random vector' or one dimensional subspace and then see how far their projections are from one another (see Figure 2):

Runtime of Idea

1. Projecting all times is $\mathcal{O}(P D)$-time (just inner products).
2. Finding close projected points is equivalent to sorting a list and thus has time-complexity $\mathcal{O}(P \log (P))$ (using, for example, merge-sort).

Therefore, the total time-complexity is $\mathcal{O}(P(D+\log (P)))$. This is an approximation even to our approximated problem, and so we would like error guarantees.

5 Solution

Definition Call a random function $h: \mathbb{R}^{D} \rightarrow \mathbb{Z}$ a locality sensitive hash function if there is $p_{1}, p_{2} \in(0,1)$ with $p_{1}>p_{2}$ and such that the following holds for arbitrary $\vec{x}, \vec{y} \in \mathbb{R}^{D}$,
(i) $\|\vec{x}-\vec{y}\|<r$ implies $h(\vec{x})=h(\vec{y})$ with probability at least p_{1}.
(ii) if $\|\vec{x}-\vec{y}\|_{2}>c \cdot r$, then $h(\vec{x})=h(\vec{y})$ with probability at most p_{2}.

Figure 2: Projection onto 1-Dimensional Subspace

Remark A locality sensitive hash function h sends points that are close to the same integer and sends far points to different integers (this follows from (i) and (ii) and the fact that $p_{1}>p_{2}$).
Now consider the following random function: Pick $w \in \mathbb{R}^{+}$. Then let $\vec{G} \sim N\left(\overrightarrow{0}, I_{D \times D}\right)$ and $U \sim U([0, w])$. Finally, define $h: \mathbb{R}^{\mathbb{D}} \rightarrow \mathbb{Z}$ as

$$
\begin{equation*}
h(x)=\left\lfloor\frac{\langle\vec{g}, \vec{x}\rangle+u}{w}\right\rfloor \tag{}
\end{equation*}
$$

where $U=u$ and $\vec{G}=\vec{g}$ are instances of the random variable and vector defined above.

Remark The above notation means that \vec{g} is a random vector with independent, identically distributed, mean 0 , and variance 1 , Gaussian entries. Similarly, u is a random uniform variable from the closed interval $[0, w]$.

Theorem 1. The function h defined by $\left(^{*}\right)$ is a locality-sensitive hash function.
Proof: Let $\vec{x}, \vec{y} \in \mathbb{R}^{D}$ be arbitrary. Define the following two events A and B,

$$
\begin{aligned}
& A: h(\vec{x})=h(\vec{y}) \\
& B:|\langle\vec{g}, \vec{x}-\vec{y}\rangle|<w
\end{aligned}
$$

Note, by the definition of $h\left({ }^{*}\right)$, if A occurs, then B occurs; that is $\mathbb{P}[B \mid A]=1$. Therefore, Bayes' Law simplifies:

$$
\mathbb{P}[A] \cdot \mathbb{P}[B \mid A]=\mathbb{P}[B] \cdot \mathbb{P}[A \mid B]
$$

$$
\begin{equation*}
\mathbb{P}[A]=\mathbb{P}[B] \cdot \mathbb{P}[A \mid B] \tag{1}
\end{equation*}
$$

Then, by using the variable $z:=|\langle\vec{g}, \vec{x}-\vec{y}\rangle|$, and considering all possible values of z for which event B is true, we may transform the right-hand side of (I) to an integral. Writing this all out, we get,

$$
\begin{equation*}
\mathbb{P}[h(\vec{x})=h(\vec{y})]=\int_{0}^{w} \mathbb{P}[h(\vec{x})=h(\vec{y})|z=|\langle\vec{g}, \vec{x}-\vec{y}\rangle|] \cdot \mathbb{P}[z=|\langle\vec{g}, \vec{x}-\vec{y}\rangle|] \mathrm{d} z \tag{2}
\end{equation*}
$$

We now wish to simplify $\mathbb{P}[h(\vec{x})=h(\vec{y})|z=|\langle\vec{g}, \vec{x}-\vec{y}\rangle|]$. One can show that for $0 \leq z \leq w$, we have,

$$
\mathbb{P}\left[h(\vec{x})=h(\vec{y})|z=|\langle\vec{g}, \vec{x}-\vec{y}\rangle|]=\frac{w-z}{w} .\right.
$$

This follows from considering the different values of u in $\left(^{*}\right)$ that will either (i) shift the integer parts of $\langle\vec{g}, \vec{x}\rangle / w$ and $\langle\vec{g}, \vec{y}\rangle / w$ to be the same when they are different, or (ii) shift them so that they stay the same when they are already the same.

So (2) becomes

$$
\begin{array}{r}
\int_{0}^{w} \frac{w-z}{w} \mathbb{P}[|\langle\vec{g}, \vec{x}-\vec{y}\rangle|=z] \mathrm{d} z=\int_{0}^{w} \mathbb{P}[|\langle\vec{g}, \vec{x}-\vec{y}\rangle|=z] \mathrm{d} z-\int_{0}^{w} \frac{z}{w} \mathbb{P}[|\langle\vec{g}, \vec{x}-\vec{y}\rangle|=z] \mathrm{d} z \\
=\frac{\sqrt{2}}{\|\vec{x}-\vec{y}\| \sqrt{\pi}}\left(\int_{0}^{w} \exp \left(\frac{-z^{2}}{2\|\vec{x}-\vec{y}\|^{2}}\right) \mathrm{d} z-\int_{0}^{w} \frac{z}{w} \exp \left(\frac{-z^{2}}{2\|\vec{x}-\vec{y}\|^{2}}\right) \mathrm{d} z\right)
\end{array}
$$

Now writing $n:=\|\vec{x}-\vec{y}\|$, using the change of variables $\frac{z}{\sqrt{2} n} \longmapsto z$, and integrating the second integral, we get,

$$
\begin{equation*}
\mathbb{P}[h(\vec{x})=h(\vec{y})]=\frac{2}{\sqrt{\pi}} \int_{0}^{\frac{w}{\sqrt{2 n}}} \exp \left(-z^{2}\right) \mathrm{d} z+\sqrt{\frac{2}{\pi}} \frac{n}{w}\left[\exp \left(-\left(\frac{w}{\sqrt{2} n}\right)^{2}\right)-1\right] \tag{3}
\end{equation*}
$$

Define $p_{w}(n)=\mathbb{P}[h(\vec{x})=h(\vec{y})]$. (3) shows that

$$
p_{w}^{\prime}(n)=\frac{\sqrt{2}}{\sqrt{\pi}} \frac{e^{-\left(\frac{w}{\sqrt{2} n}\right)^{2}}-1}{w}
$$

so that $p_{w}^{\prime}(n)<0$ for all n (since $n \geq 0$).
Now, let's consider the two cases:
(i) $n \leq r$: this implies

$$
p_{w}(n) \geq \operatorname{erf}\left(\frac{w}{\sqrt{2} r}\right)+\sqrt{\frac{2}{w}} \frac{r}{w}\left(e^{-\left(\frac{w}{\sqrt{2} r}\right)^{2}}-1\right)=: p_{1}
$$

where we have defined p_{1} above.
(ii) $n \geq c r$: this and $p_{w}^{\prime}(n)<0$ imply

$$
p_{w}(n) \leq \operatorname{erf}\left(\frac{w}{\sqrt{2} r c}\right)+\sqrt{\frac{2}{w}} \frac{r c}{w}\left(e^{-\left(\frac{w}{\sqrt{2 r}}\right)^{2}}-1\right)=: p_{2}
$$

where we have defined p_{2} above.

Finally, we note p_{1} and p_{2} satisfy the required properties in the definition of a locality sensitive hash function. In particular, $p_{1}>p_{2}$. Therefore, h is a locality sensitive hash function for Euclidean distance.

References

[1] M. Datar, P. Indyk, N. Immorlica, and V. Mirrokni. Locality-Sensitive Hashing Scheme Based on p-Stable Distributions. SCG'04 Proceedings of the twentieth annual symposium on Computational Geometry, pages 253-262, 2004.
[2] P. Indyk and R. Motwani. Approximate Nearest Neighbors: Towards Removing the Curse of Dimensionality. STOC '98 Proceedings of the thirtieth annual ACM symposium on Theory of computing, pages 604-613, 1998.

