
MTH 995-003: Intro to CS and Big Data Spring 2014

Lecture 8 – January 30, 2014

Inst. Mark Iwen Scribe: Kishavan Bhola

1 Overview

In this lecture, we begin a probablistic method for approximating the Nearest Neighbor problem
by way of a locality sensitive hash function. We compute the two probabilities for the relevant hash
function.

2 Problem

Given r ∈ R+, c > 1, and X := {~x1, . . . , ~xP } ⊂ RD, compute

f : [P]→ [P] ∪ {−1}

such that

1. d(~xj , ~xf(j)) ≤ c · r for all j ∈ [P] such that ∃j 6= i ∈ [P] with d(~xj , ~xi) ≤ r; and

2. f(j) = −1 if there does not exist j 6= i ∈ [P] with d(~xj , ~xi) ≤ c · r .

Remark 1 The above can easily be generalized to arbitrary metric spaces, where d is the metric,
but in the following, we will focus on RD with d being the Euclidean 2-norm.

Remark 2 This is known as the (c, r) - Nearest Neighbor Problem. Note that (1) and (2) do not
uniquely determine a function, and moreover, it is possible that ~xf(j) is not the nearest neighbor to
~xj (see Figure 1). Hence, such an f is an approximation to the standard Nearest Neighbor problem.

3 Naive Solution

1. Compute every pairwise distance ‖~xj − ~xi‖2, i 6= j. This takes O(P 2D)-time.

2. Output the index of the closest point to each ~xj as f(j).

Clearly such an f gives an exact solution to the Nearest-Neighbor problem, and thus also satisfies
(1) and (2) in the Problem statement. We wish to approximate this Naive solution with better
runtime than O(P 2D).

1

Figure 1: Ambiguity of f

4 Idea

Project ~x1, . . . , ~xp onto a ‘random vector’ or one dimensional subspace and then see how far their
projections are from one another (see Figure 2):

Runtime of Idea

1. Projecting all times is O(PD)-time (just inner products).

2. Finding close projected points is equivalent to sorting a list and thus has time-complexity
O(P log(P)) (using, for example, merge-sort).

Therefore, the total time-complexity is O(P (D + log(P))). This is an approximation even to our
approximated problem, and so we would like error guarantees.

5 Solution

Definition Call a random function h : RD → Z a locality sensitive hash function if there is
p1, p2 ∈ (0, 1) with p1 > p2 and such that the following holds for arbitrary ~x, ~y ∈ RD,

(i) ‖~x− ~y‖ < r implies h(~x) = h(~y) with probability at least p1.

(ii) if ‖~x− ~y‖2 > c · r, then h(~x) = h(~y) with probability at most p2.

2

Figure 2: Projection onto 1-Dimensional Subspace

Remark A locality sensitive hash function h sends points that are close to the same integer and
sends far points to different integers (this follows from (i) and (ii) and the fact that p1 > p2).

Now consider the following random function: Pick w ∈ R+. Then let ~G ∼ N(~0, ID×D) and
U ∼ U([0, w]). Finally, define h : RD → Z as

h(x) =

⌊
〈~g, ~x〉+ u

w

⌋
(*)

where U = u and ~G = ~g are instances of the random variable and vector defined above.

Remark The above notation means that ~g is a random vector with independent, identically
distributed, mean 0, and variance 1, Gaussian entries. Similarly, u is a random uniform variable
from the closed interval [0, w].

Theorem 1. The function h defined by (*) is a locality-sensitive hash function.

Proof: Let ~x, ~y ∈ RD be arbitrary. Define the following two events A and B,

A : h(~x) = h(~y)

B : |〈~g, ~x− ~y〉| < w

Note, by the definition of h (*), if A occurs, then B occurs; that is P [B|A] = 1. Therefore, Bayes’
Law simplifies:

P[A] · P[B|A] = P[B] · P[A|B]

3

P[A] = P[B] · P[A|B] (1)

Then, by using the variable z := |〈~g, ~x−~y〉|, and considering all possible values of z for which event
B is true, we may transform the right-hand side of (I) to an integral. Writing this all out, we get,

P [h(~x) = h(~y)] =

∫ w

0
P [h(~x) = h(~y)|z = |〈~g, ~x− ~y〉|] · P [z = |〈~g, ~x− ~y〉|] dz (2)

We now wish to simplify P [h(~x) = h(~y)|z = |〈~g, ~x− ~y〉|]. One can show that for 0 ≤ z ≤ w, we
have,

P [h(~x) = h(~y)|z = |〈~g, ~x− ~y〉|] =
w − z
w

.

This follows from considering the different values of u in (*) that will either (i) shift the integer
parts of 〈~g, ~x〉/w and 〈~g, ~y〉/w to be the same when they are different, or (ii) shift them so that
they stay the same when they are already the same.

So (2) becomes∫ w

0

w − z
w

P [|〈~g, ~x− ~y〉| = z] dz =

∫ w

0
P [|〈~g, ~x− ~y〉| = z] dz −

∫ w

0

z

w
P [|〈~g, ~x− ~y〉| = z] dz

=

√
2

‖~x− ~y‖
√
π

(∫ w

0
exp

(
−z2

2‖~x− ~y‖2

)
dz −

∫ w

0

z

w
exp

(
−z2

2‖~x− ~y‖2

)
dz

)

Now writing n := ‖~x − ~y‖, using the change of variables z√
2n
7−→ z, and integrating the second

integral, we get,

P [h(~x) = h(~y)] =
2√
π

∫ w√
2n

0
exp(−z2)dz +

√
2

π

n

w

[
exp

(
−
(

w√
2n

)2
)
− 1

]
(3)

Define pw(n) = P [h(~x) = h(~y)]. (3) shows that

p′w(n) =

√
2√
π

e
−
(

w√
2n

)2

− 1

w

so that p′w(n) < 0 for all n (since n ≥ 0).

Now, let’s consider the two cases:

(i) n ≤ r: this implies

pw(n) ≥ erf

(
w√
2r

)
+

√
2

w

r

w

(
e
−
(

w√
2r

)2

− 1

)
=: p1

where we have defined p1 above.

4

(ii) n ≥ cr: this and p′w(n) < 0 imply

pw(n) ≤ erf

(
w√
2rc

)
+

√
2

w

rc

w

(
e
−
(

w√
2r

)2

− 1

)
=: p2

where we have defined p2 above.

Finally, we note p1 and p2 satisfy the required properties in the definition of a locality sensitive hash
function. In particular, p1 > p2. Therefore, h is a locality sensitive hash function for Euclidean
distance.

References

[1] M. Datar, P. Indyk, N. Immorlica, and V. Mirrokni. Locality-Sensitive Hashing Scheme
Based on p-Stable Distributions. SCG’04 Proceedings of the twentieth annual symposium on
Computational Geometry, pages 253-262, 2004.

[2] P. Indyk and R. Motwani. Approximate Nearest Neighbors: Towards Removing the Curse of
Dimensionality. STOC ’98 Proceedings of the thirtieth annual ACM symposium on Theory
of computing, pages 604-613, 1998.

5

