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1 Overview

In this lecture, we continue the discussion of subspace approximation with τ = ∞. We give a
probabalistic method with fast-implementation guarantees that comes close to the optimal solution
(see [2] for more details).

2 Problem

Given P = { ~x1, . . . , ~xN} ⊂ RN , compute A ∈ Πd(RN ) such that

R∞(A, P ) ≈ Rd(P ) = inf
Ã∈Πd(RN )

(
max

j=1,...,N
‖ ~xj −ΠÃ ~xj‖2

)
(1)

3 Solution

Lemma 1 (last time). If Ỹ is a solution to SPD(2), then Ỹ has r ≥ D−d orthonormal eigenvectors
~v1, . . . , ~vr and

r∑
l=1

λl〈~x1, ~vl〉2 ≤ R2
d(P )

Lemma 2. The eigenvalues of Ỹ , λ1, . . . , λr ∈ (0, 1], can be partitioned into D − d disjoint sets
I1, . . . , ID−d ⊂ [r] := {1, . . . , r} such that∑

l∈Ik

λl ≥
1

2
∀k ∈ [D − d]

Homework 2.4: Prove Lemma 2.

Remark We will use these D − d groups of eigenvectors to construct a basis for A⊥ := S⊥A .

Definition Let ~Ψ ∈ Rr be a random vector with independent identically distributed Bernoulli
entries from {1,−1} and, ∀k ∈ [D − d], define ~zk ∈ RD by

~zk :=

∑
l∈Ik Ψl

√
λl~vl√∑

l∈Ik λl
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Homework 2.5 Show that ~z1, . . . , ~zD−d defined above are orthonormal.

Theorem 1. (Bernstein; see, e.g., Chapter 7 of [1]) Let ~Ψ ∈ Rr be a random vector with i.i.d.
Bernoulli entries from {1,−1} (each selected with probability 1/2). Then for any ~e ∈ Rr and β > 0,

P[〈~Ψ, ~e〉2 > β‖~e‖22] ≤ 2 exp(−β/2)

Defintion Denote the elements of each Ik ⊂ [r] by lk,1, . . . , lk,|Ik|. Now define ~Ψ|Ik ∈ R|Ik| to be

(~Ψ|Ik)h := ~Ψlk,h

Remark Here, ~Ψ ∈ Rr.

Definition Let k ∈ [D−d] and j ∈ [N ]. We define the error vector ~ek,j ∈ R|Ik| to be the vector
with, for each l̄ ∈ [|Ik|],

(~ek,j)l̄ :=
√
λlk,l̄〈~xj , ~vlk,l̄〉

Remark ‖~ek,j‖22 =
∑

l∈Ik λl〈~x1, ~vl〉2 (note the similarity of this sum to the one in Lemma 1).

Lemma 3. Choose k ∈ [D − d] and ~xj ∈ P . Then

P
[
〈~xj , ~zk〉2 > 12 ln(N)‖~ek,j‖22

]
≤ 2

N3

Proof: Lemma 2 tells us that

∑
l∈Ik

λl ≥
1

2
∀k ∈ [D − d]

Thus,

〈~xj , ~zk〉2 =

〈
~xj ,

∑
l∈Ik Ψl

√
λl~vl√∑

l∈Ik λl

〉2

(by definition)

≤ 2

〈
~xj ,
∑
l∈Ik

Ψl

√
λl~vl

〉2

(using Lemma 2)

= 2

∑
l∈Ik

Ψl

√
λl〈~xj , ~vl〉

2

(linearity of the inner product)

= 2〈~Ψ|Ik , ~ek,j〉
2 (by definitions)

Thus,
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P
[
〈~xj , ~zk〉2 > 12 ln(N)‖~ek,j‖22

]
≤ P

[
〈~Ψ|Ik , ~ek,j〉

2 > 6 ln(N)‖~ek,j‖22
]

≤ 2 exp(−3 ln(N)) (using Theorem 1)

=
2

N3

Remark The lemma above plus Lemma 1 shows this random combination gives us something
close to what the best error should be with high probability (w.h.p.).

Theorem 2. Let P ⊂ RD have |P | = N . We can compute in D,N -polynomial time an affine
subspace A of dimension d such that

R∞(A, P ) ≤ 2
√

12 · ln(2N)Rd(P )

with probability at least 1− 8
N .

Proof: First, let P̄ be the symmetrization of P . Note that |P̄ | ≤ 2N . Moreover, if D > 2N , we can
reduce D by working in Span(P̄ ).

Now define the statement E as follows:

E : ∃~xj ∈ P̄ ,∃kj ∈ [D − d] such that 〈~xj , ~zk〉2 > 12 ln(2N)‖~ek,j‖2

Let us bound the probability that E is true:

P [E] ≤
∑

j∈[|P̄ |],k∈[D−d]

P
[
〈~xj , ~zk〉2 > 12 ln(2N)‖~ek,j‖2

]
(by the union bound)

≤ 2N(D − d)
2

N3
(using Lemma 4)

≤ 4(D − d)

N2

≤ 8

N
(since D ≤ 2N )

Now, if E is false, then we have for each ~xj ∈ P̄ ,

‖ΠSpan(~z1,...,~zk)~xj‖2 ≡
D−d∑
k=1

〈~xj , ~zk〉2

≤ 12 ln(2N)

D−d∑
k=1

‖~ek,j‖2 (since E is false)

≤ 12 ln(2N)R2
d(P̄ ) (by Lemma 1)
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Now, taking square roots and, via homework problem 1 from lecture 6, we get the desired error
bound. We should choose A to be,

A := (Span(~z1, . . . , ~zD−d))⊥ + ~x1

And this is computable in polynomial time since we get it from Ỹ (the solution to an SDP).

References

[1] Simon Foucart, Holger Rauhut. A Mathematical Introduction to Compressed Sensing. Springer,
2013.

[2] K. Varadarajan, S. Venkatesh, Y. Ye, and J. Zhang. Approximating the Radii of Point Sets.
SIAM J. Comput., Vol. 36, No. 6, pp. 1764-1776.

4


