MTH 995-003: Intro to CS and Big Data	Spring 2014	
Lecture 7- January 28, 2014		
Inst. Mark Iwen		Scribe: Kishavan Bhola

1 Overview

In this lecture, we continue the discussion of subspace approximation with $\tau=\infty$. We give a probabalistic method with fast-implementation guarantees that comes close to the optimal solution (see [2] for more details).

2 Problem

Given $P=\left\{\overrightarrow{x_{1}}, \ldots, \vec{x}_{N}\right\} \subset \mathbb{R}^{N}$, compute $\mathcal{A} \in \Pi_{d}\left(\mathbb{R}^{N}\right)$ such that

$$
\begin{equation*}
R_{\infty}(\mathcal{A}, P) \approx R_{d}(P)=\inf _{\tilde{\mathcal{A}} \in \Pi_{d}\left(\mathbb{R}^{N}\right)}\left(\max _{j=1, \ldots, N}\left\|\overrightarrow{x_{j}}-\Pi_{\tilde{\mathcal{A}}} \overrightarrow{x_{j}}\right\|_{2}\right) \tag{1}
\end{equation*}
$$

3 Solution

Lemma 1 (last time). If \tilde{Y} is a solution to SPD (2), then \tilde{Y} has $r \geq D-d$ orthonormal eigenvectors $\overrightarrow{v_{1}}, \ldots, \vec{v}_{r}$ and

$$
\sum_{l=1}^{r} \lambda_{l}\left\langle\vec{x}_{1}, \vec{v}_{l}\right\rangle^{2} \leq R_{d}^{2}(P)
$$

Lemma 2. The eigenvalues of $\widetilde{Y}, \lambda_{1}, \ldots, \lambda_{r} \in(0,1]$, can be partitioned into $D-d$ disjoint sets $I_{1}, \ldots, I_{D-d} \subset[r]:=\{1, \ldots, r\}$ such that

$$
\sum_{l \in I_{k}} \lambda_{l} \geq \frac{1}{2} \quad \forall k \in[D-d]
$$

Homework 2.4: Prove Lemma 2.

Remark We will use these $D-d$ groups of eigenvectors to construct a basis for $\mathcal{A}^{\perp}:=S_{\mathcal{A}}^{\perp}$.

Definition Let $\vec{\Psi} \in \mathbb{R}^{r}$ be a random vector with independent identically distributed Bernoulli entries from $\{1,-1\}$ and, $\forall k \in[D-d]$, define $\overrightarrow{z_{k}} \in \mathbb{R}^{D}$ by

$$
\overrightarrow{z_{k}}:=\frac{\sum_{l \in I_{k}} \Psi_{l} \sqrt{\lambda_{l}} \vec{v}_{l}}{\sqrt{\sum_{l \in I_{k}} \lambda_{l}}}
$$

Homework 2.5 Show that $\vec{z}_{1}, \ldots, \vec{z}_{D-d}$ defined above are orthonormal.
Theorem 1. (Bernstein; see, e.g., Chapter 7 of [1]) Let $\vec{\Psi} \in \mathbb{R}^{r}$ be a random vector with i.i.d. Bernoulli entries from $\{1,-1\}$ (each selected with probability $1 / 2$). Then for any $\vec{e} \in \mathbb{R}^{r}$ and $\beta>0$,

$$
\mathbb{P}\left[\langle\vec{\Psi}, \vec{e}\rangle^{2}>\beta\|\vec{e}\|_{2}^{2}\right] \leq 2 \exp (-\beta / 2)
$$

Defintion Denote the elements of each $I_{k} \subset[r]$ by $l_{k, 1}, \ldots, l_{k,\left|I_{k}\right|}$. Now define $\left.\vec{\Psi}\right|_{I_{k}} \in \mathbb{R}^{\left|I_{k}\right|}$ to be

$$
\left(\left.\vec{\Psi}\right|_{I_{k}}\right)_{h}:=\vec{\Psi}_{l_{k, h}}
$$

Remark Here, $\vec{\Psi} \in \mathbb{R}^{r}$.

Definition Let $k \in[D-d]$ and $j \in[N]$. We define the error vector $\vec{e}_{k, j} \in \mathbb{R}^{\left|I_{k}\right|}$ to be the vector with, for each $\bar{l} \in\left[\left|I_{k}\right|\right]$,

$$
\left(\vec{e}_{k, j}\right)_{\bar{l}}:=\sqrt{\lambda_{l_{k, \bar{l}}}}\left\langle\vec{x}_{j}, \quad \vec{v}_{l_{k, \bar{l}}}\right\rangle
$$

Remark $\left\|\vec{e}_{k, j}\right\|_{2}^{2}=\sum_{l \in I_{k}} \lambda_{l}\left\langle\vec{x}_{1}, \vec{v}_{l}\right\rangle^{2}$ (note the similarity of this sum to the one in Lemma 1).
Lemma 3. Choose $k \in[D-d]$ and $\vec{x}_{j} \in P$. Then

$$
\mathbb{P}\left[\left\langle\vec{x}_{j}, \vec{z}_{k}\right\rangle^{2}>12 \ln (N)\left\|\vec{e}_{k, j}\right\|_{2}^{2}\right] \leq \frac{2}{N^{3}}
$$

Proof: Lemma 2 tells us that

$$
\sum_{l \in I_{k}} \lambda_{l} \geq \frac{1}{2} \quad \forall k \in[D-d]
$$

Thus,

$$
\begin{aligned}
\left\langle\vec{x}_{j}, \vec{z}_{k}\right\rangle^{2} & =\left\langle\vec{x}_{j}, \frac{\sum_{l \in I_{k}} \Psi_{l} \sqrt{\lambda_{l}} \vec{v}_{l}}{\sqrt{\sum_{l \in I_{k}} \lambda_{l}}}\right\rangle^{2} & & \text { (by definition) } \\
& \leq 2\left\langle\vec{x}_{j}, \sum_{l \in I_{k}} \Psi_{l} \sqrt{\lambda_{l}} \vec{v}_{l}\right\rangle^{2} & & \text { (using Lemma 2) } \\
& =2\left(\sum_{l \in I_{k}} \Psi_{l} \sqrt{\lambda_{l}}\left\langle\vec{x}_{j}, \vec{v}_{l}\right\rangle\right)^{2} & & \text { (linearity of the inner product) } \\
& =2\left\langle\left.\vec{\Psi}\right|_{I_{k}}, \vec{e}_{k, j}\right\rangle^{2} & & \text { (by definitions) }
\end{aligned}
$$

Thus,

$$
\begin{array}{rlr}
\mathbb{P}\left[\left\langle\vec{x}_{j}, \vec{z}_{k}\right\rangle^{2}>12 \ln (N)\left\|\vec{e}_{k, j}\right\|_{2}^{2}\right] & & \\
& \leq \mathbb{P}\left[\left\langle\left.\vec{\Psi}\right|_{I_{k}}, \vec{e}_{k, j}\right\rangle^{2}>6 \ln (N)\left\|\vec{e}_{k, j}\right\|_{2}^{2}\right] & \\
& \leq 2 \exp (-3 \ln (N)) & \\
& =\frac{2}{N^{3}} & \text { (using Theorem 1) }
\end{array}
$$

Remark The lemma above plus Lemma 1 shows this random combination gives us something close to what the best error should be with high probability (w.h.p.).
Theorem 2. Let $P \subset \mathbb{R}^{D}$ have $|P|=N$. We can compute in D, N-polynomial time an affine subspace \mathcal{A} of dimension d such that

$$
R_{\infty}(\mathcal{A}, P) \leq 2 \sqrt{12 \cdot \ln (2 N)} R_{d}(P)
$$

with probability at least $1-\frac{8}{N}$.
Proof: First, let \bar{P} be the symmetrization of P. Note that $|\bar{P}| \leq 2 N$. Moreover, if $D>2 N$, we can reduce D by working in $\operatorname{Span}(\bar{P})$.

Now define the statement E as follows:

$$
E: \exists \vec{x}_{j} \in \bar{P}, \exists k_{j} \in[D-d] \text { such that }\left\langle\vec{x}_{j}, \vec{z}_{k}\right\rangle^{2}>12 \ln (2 N)\left\|\vec{e}_{k, j}\right\|^{2}
$$

Let us bound the probability that E is true:

$$
\begin{aligned}
\mathbb{P}[E] & \leq \sum_{j \in[[\bar{P} \mid], k \in[D-d]} \mathbb{P}\left[\left\langle\vec{x}_{j}, \vec{z}_{k}\right\rangle^{2}>12 \ln (2 N)\left\|\vec{e}_{k, j}\right\|^{2}\right] & & \text { (by the union bound) } \\
& \leq 2 N(D-d) \frac{2}{N^{3}} & & \text { (using Lemma 4) } \\
& \leq \frac{4(D-d)}{N^{2}} & & \\
& \leq \frac{8}{N} & & \text { (since } D \leq 2 N)
\end{aligned}
$$

Now, if E is false, then we have for each $\vec{x}_{j} \in \bar{P}$,

$$
\begin{aligned}
\left\|\Pi_{\operatorname{Span}\left(\vec{z}_{1}, \ldots, \vec{z}_{k}\right)} \vec{x}_{j}\right\|^{2} & \equiv \sum_{k=1}^{D-d}\left\langle\vec{x}_{j}, \vec{z}_{k}\right\rangle^{2} & & \\
& \leq 12 \ln (2 N) \sum_{k=1}^{D-d}\left\|\vec{e}_{k, j}\right\|^{2} & & \text { (since } E \text { is false) } \\
& \leq 12 \ln (2 N) R_{d}^{2}(\bar{P}) & & (\text { by Lemma } 1)
\end{aligned}
$$

Now, taking square roots and, via homework problem 1 from lecture 6, we get the desired error bound. We should choose \mathcal{A} to be,

$$
\mathcal{A}:=\left(\operatorname{Span}\left(\vec{z}_{1}, \ldots, \vec{z}_{D-d}\right)\right)^{\perp}+\vec{x}_{1}
$$

And this is computable in polynomial time since we get it from \widetilde{Y} (the solution to an SDP).

References

[1] Simon Foucart, Holger Rauhut. A Mathematical Introduction to Compressed Sensing. Springer, 2013.
[2] K. Varadarajan, S. Venkatesh, Y. Ye, and J. Zhang. Approximating the Radii of Point Sets. SIAM J. Comput., Vol. 36, No. 6, pp. 1764-1776.

