MTH 995-003: Intro to CS and Big Data Spring 2014

Lecture 7 — January 28, 2014
Inst. Mark Twen Scribe: Kishavan Bhola

1 Overview

In this lecture, we continue the discussion of subspace approximation with 7 = co. We give a
probabalistic method with fast-implementation guarantees that comes close to the optimal solution
(see [2] for more details).

2 Problem
Given P = {21,...,Zn} C RY, compute A € I1z(R") such that
Roo(A,P) ~ Ry(P) = _ inf ( max ||2; — Il 5 @ 2) 1
AP RP) = it (a5 T )

3 Solution

Lemma 1 (last time). IfY is a solution to SPD(2), then'Y hasr > D—d orthonormal eigenvectors
Viy..., U and
T
> (@, @)* < RY(P)
=1
Lemma 2. The eigenvalues of EN/, A,y A € (0,1], can be partitioned into D — d disjoint sets
L,....,Dp_qC[r]:={1,...,r} such that

1
Z)\l2§ Vk € [D — d]
el

Homework 2.4:  Prove Lemma 2.
Remark We will use these D — d groups of eigenvectors to construct a basis for A+ := Sj.

Definition Let U € R” be a random vector with independent identically distributed Bernoulli
entries from {1, —1} and, Yk € [D — d], define z; € RP by

2 Z[e]k ‘111\/71171
k=

\/ Zlelk Al



Homework 2.5 Show that 27,...,Zp_q4 defined above are orthonormal.

Theorem 1. (Bernstein; see, e.g., Chapter 7 of [1]) Let U € R" be a random vector with i.i.d.
Bernoulli entries from {1, —1} (each selected with probability 1/2). Then for any € € R" and > 0,

P(¥,&)? > Béll3] < 2exp(—5/2)
Defintion Denote the elements of each I C [r] by lg 1, .., 7,|- Now define \I_}]]k e Rl to be
(\f"lk)h = \I_;lk,h

Remark Here, U c R

Definition Let k € [D —d] and j € [N]. We define the error vector & ; € R+l to be the vector

with, for each I € [|I;]],
(@)= Aoy (& T )

Remark ||é |3 = > ter, N, #7)? (note the similarity of this sum to the one in Lemma 1).
Lemma 3. Choose k € [D —d] and Z; € P. Then

2

P [(7,5)° > 12(N) |k 3] <

Proof: Lemma 2 tells us that

lely
Thus,
2
RV
(%5, %)’ = <fja Zldkl\/>”> (by definition)
Ve N
< Z Ui/ A vl> (using Lemma 2)
lel,
2
Z Ui/ N N (@, 01) (linearity of the inner product)
lely,
208y, . ;)° (by definitions)
Thus,



P [(#,2) > 12In(N)||& 3]
< P (F]1,, )% > 61n(N)]|é 1]

< 2exp(—31In(N)) (using Theorem 1)
2
N3

O]

Remark The lemma above plus Lemma 1 shows this random combination gives us something
close to what the best error should be with high probability (w.h.p.).

Theorem 2. Let P C RP have |P| = N. We can compute in D, N-polynomial time an affine
subspace A of dimension d such that

Roo(A, P) < 24/12 - In(2N) Ry(P)

with probability at least 1 — %.

Proof: First, let P be the symmetrization of P. Note that |P| < 2N. Moreover, if D > 2N, we can
reduce D by working in Span(P).

Now define the statement E as follows:
E :3%; € P,3k; € [D — d] such that (7}, Z)* > 12In(2N)|éx ;|
Let us bound the probability that E is true:

P[E] < Z P [(Z}, Zk)? > 121In(2N)| & ;1% (by the union bound)
jellPll.ke[D—d]
2 .
<2N(D — d)m (using Lemma 4)
< 4(D —d)
8

< N (since D < 2N )

Now, if E is false, then we have for each &; € p,

D—d
Mspan(zi,... 50817 = Y (&, %)
k=1
D—d
<12In(2N) Y [1Ek ;) (since E is false)
k=1
< 12In(2N)R%(P) (by Lemma 1)



Now, taking square roots and, via homework problem 1 from lecture 6, we get the desired error
bound. We should choose A to be,

A= (Span(%1,...,2p—a))" +

And this is computable in polynomial time since we get it from Y (the solution to an SDP). [
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