MTH 995-003: Intro to CS and Big Data

Spring 2014

Lecture 7 – January 28, 2014

Inst. Mark Iwen Scribe: Kishavan Bhola

1 Overview

In this lecture, we continue the discussion of subspace approximation with $\tau = \infty$. We give a probabilistic method with fast-implementation guarantees that comes close to the optimal solution (see [2] for more details).

2 Problem

Given
$$P = \{\vec{x_1}, \dots, \vec{x_N}\} \subset \mathbb{R}^N$$
, compute $\mathcal{A} \in \Pi_d(\mathbb{R}^N)$ such that

$$R_{\infty}(\mathcal{A}, P) \approx R_d(P) = \inf_{\widetilde{\mathcal{A}} \in \Pi_d(\mathbb{R}^N)} \left(\max_{j=1,\dots,N} \|\vec{x_j} - \Pi_{\widetilde{\mathcal{A}}} \cdot \vec{x_j}\|_2 \right)$$
(1)

3 Solution

Lemma 1 (last time). If \tilde{Y} is a solution to SPD(2), then \tilde{Y} has $r \geq D-d$ orthonormal eigenvectors $\vec{v_1}, \ldots, \vec{v_r}$ and

$$\sum_{l=1}^r \lambda_l \langle \vec{x}_1, \vec{v}_l \rangle^2 \le R_d^2(P)$$

Lemma 2. The eigenvalues of \widetilde{Y} , $\lambda_1, \ldots, \lambda_r \in (0, 1]$, can be partitioned into D - d disjoint sets $I_1, \ldots, I_{D-d} \subset [r] := \{1, \ldots, r\}$ such that

$$\sum_{l \in I_k} \lambda_l \ge \frac{1}{2} \quad \forall k \in [D-d]$$

Homework 2.4: Prove Lemma 2.

Remark We will use these D - d groups of eigenvectors to construct a basis for $\mathcal{A}^{\perp} := S_{\mathcal{A}}^{\perp}$.

Definition Let $\vec{\Psi} \in \mathbb{R}^r$ be a random vector with independent identically distributed Bernoulli entries from $\{1, -1\}$ and, $\forall k \in [D - d]$, define $\vec{z_k} \in \mathbb{R}^D$ by

$$ec{z_k} := rac{\sum_{l \in I_k} \Psi_l \sqrt{\lambda_l} ec{v_l}}{\sqrt{\sum_{l \in I_k} \lambda_l}}$$

Homework 2.5 Show that $\vec{z}_1, \ldots, \vec{z}_{D-d}$ defined above are orthonormal.

Theorem 1. (Bernstein; see, e.g., Chapter 7 of [1]) Let $\vec{\Psi} \in \mathbb{R}^r$ be a random vector with i.i.d. Bernoulli entries from $\{1, -1\}$ (each selected with probability 1/2). Then for any $\vec{e} \in \mathbb{R}^r$ and $\beta > 0$,

$$\mathbb{P}[\langle \vec{\Psi}, \vec{e} \rangle^2 > \beta \| \vec{e} \|_2^2] \le 2 \exp(-\beta/2)$$

Defintion Denote the elements of each $I_k \subset [r]$ by $l_{k,1}, \ldots, l_{k,|I_k|}$. Now define $\vec{\Psi}|_{I_k} \in \mathbb{R}^{|I_k|}$ to be

$$(\vec{\Psi}|_{I_k})_h := \vec{\Psi}_{l_{k,h}}$$

Remark Here, $\vec{\Psi} \in \mathbb{R}^r$.

Definition Let $k \in [D-d]$ and $j \in [N]$. We define the **error vector** $\vec{e}_{k,j} \in \mathbb{R}^{|I_k|}$ to be the vector with, for each $\bar{l} \in [|I_k|]$,

$$(\vec{e}_{k,j})_{\bar{l}} := \sqrt{\lambda_{l_{k,\bar{l}}}} \langle \vec{x}_j, \ \vec{v}_{l_{k,\bar{l}}} \rangle$$

Remark $\|\vec{e}_{k,j}\|_2^2 = \sum_{l \in I_k} \lambda_l \langle \vec{x}_1, \vec{v}_l \rangle^2$ (note the similarity of this sum to the one in Lemma 1). **Lemma 3.** Choose $k \in [D-d]$ and $\vec{x}_j \in P$. Then

$$\mathbb{P}\left[\langle \vec{x}_j, \vec{z}_k \rangle^2 > 12 \ln(N) \| \vec{e}_{k,j} \|_2^2\right] \le \frac{2}{N^3}$$

Proof: Lemma 2 tells us that

$$\sum_{l \in I_k} \lambda_l \geq \frac{1}{2} \quad \forall k \in [D-d]$$

Thus,

$$\begin{split} \langle \vec{x}_j, \vec{z}_k \rangle^2 &= \left\langle \vec{x}_j, \frac{\sum_{l \in I_k} \Psi_l \sqrt{\lambda_l} \vec{v}_l}{\sqrt{\sum_{l \in I_k} \lambda_l}} \right\rangle^2 \qquad \text{(by definition)} \\ &\leq 2 \left\langle \vec{x}_j, \sum_{l \in I_k} \Psi_l \sqrt{\lambda_l} \vec{v}_l \right\rangle^2 \qquad \text{(using Lemma 2)} \\ &= 2 \left(\sum_{l \in I_k} \Psi_l \sqrt{\lambda_l} \langle \vec{x}_j, \vec{v}_l \rangle \right)^2 \qquad \text{(linearity of the inner product)} \\ &= 2 \langle \vec{\Psi} |_{I_k}, \vec{e}_{k,j} \rangle^2 \qquad \text{(by definitions)} \end{split}$$

Thus,

$$\begin{split} \mathbb{P}\left[\langle \vec{x}_j, \vec{z}_k \rangle^2 > 12 \ln(N) \| \vec{e}_{k,j} \|_2^2 \right] \\ &\leq \mathbb{P}\left[\langle \vec{\Psi} |_{I_k}, \vec{e}_{k,j} \rangle^2 > 6 \ln(N) \| \vec{e}_{k,j} \|_2^2 \right] \\ &\leq 2 \exp(-3 \ln(N)) \\ &= \frac{2}{N^3} \end{split}$$
(using Theorem 1)

Remark The lemma above plus Lemma 1 shows this random combination gives us something close to what the best error should be with high probability (w.h.p.).

Theorem 2. Let $P \subset \mathbb{R}^D$ have |P| = N. We can compute in D, N-polynomial time an affine subspace \mathcal{A} of dimension d such that

$$R_{\infty}(\mathcal{A}, P) \le 2\sqrt{12 \cdot \ln(2N)} R_d(P)$$

with probability at least $1 - \frac{8}{N}$.

Proof: First, let \overline{P} be the symmetrization of P. Note that $|\overline{P}| \leq 2N$. Moreover, if D > 2N, we can reduce D by working in $\text{Span}(\overline{P})$.

Now define the statement E as follows:

$$E: \exists \vec{x}_j \in \bar{P}, \exists k_j \in [D-d] \text{ such that } \langle \vec{x}_j, \vec{z}_k \rangle^2 > 12 \ln(2N) \|\vec{e}_{k,j}\|^2$$

Let us bound the probability that E is true:

$$\mathbb{P}\left[E\right] \leq \sum_{j \in [|\bar{P}|], k \in [D-d]} \mathbb{P}\left[\langle \vec{x}_j, \vec{z}_k \rangle^2 > 12 \ln(2N) \|\vec{e}_{k,j}\|^2\right] \qquad \text{(by the union bound)}$$
$$\leq 2N(D-d) \frac{2}{N^3} \qquad (\text{using Lemma 4})$$
$$\leq \frac{4(D-d)}{N^2}$$
$$\leq \frac{8}{N} \qquad (\text{since } D \leq 2N \text{)}$$

Now, if E is false, then we have for each $\vec{x}_j \in \bar{P}$,

$$\begin{split} \|\Pi_{\text{Span}(\vec{z}_1,\dots,\vec{z}_k)}\vec{x}_j\|^2 &\equiv \sum_{k=1}^{D-d} \langle \vec{x}_j, \vec{z}_k \rangle^2 \\ &\leq 12 \ln(2N) \sum_{k=1}^{D-d} \|\vec{e}_{k,j}\|^2 \qquad (\text{since } E \text{ is false}) \\ &\leq 12 \ln(2N) R_d^2(\bar{P}) \qquad (\text{by Lemma 1}) \end{split}$$

Now, taking square roots and, via homework problem 1 from lecture 6, we get the desired error bound. We should choose \mathcal{A} to be,

$$\mathcal{A} := (\operatorname{Span}(\vec{z_1}, \dots, \vec{z_{D-d}}))^{\perp} + \vec{x_1}$$

And this is computable in polynomial time since we get it from \widetilde{Y} (the solution to an SDP).

References

- Simon Foucart, Holger Rauhut. A Mathematical Introduction to Compressed Sensing. Springer, 2013.
- [2] K. Varadarajan, S. Venkatesh, Y. Ye, and J. Zhang. Approximating the Radii of Point Sets. SIAM J. Comput., Vol. 36, No. 6, pp. 1764-1776.