MTH 995-003: Intro to CS and Big Data	Spring 2014
Lecture $6-$ Jan 23, 2014	
Inst. Mark Iwen	

Contents

1 Overview 1
2 Subspace Approximation 1
2.1 Definitions 1
2.2 Main Problem 2
2.3 Solving the Problem 3
2.4 A convex relaxation of the problem [SDP(2)] 3
2.5 Homework Problems(due Feb 11th(Tue.)) 4
2.6 Showing that a solution to $[\operatorname{SDP}(2)]$ has something to do with $R_{d}(P)$. 4

1 Overview

In the last lecture, we discussed feasibility and PCA (i.e., subspace approximation with $\tau=2$). In this lecture, we discuss subspace approximation with $\tau=\infty$.

2 Subspace Approximation

- In the case of $\tau=\infty$.
- Illustrate using SDP as part of "convex relaxation + rounding" strategy.

2.1 Definitions

Definition 1. A d-dimensional affine subspace, A, is a set of points $\left\{\vec{a}+\vec{x} \mid \vec{x} \in S_{A}\right\}$, where S_{A} is a d-dimensional subspace and $\vec{a} \in \mathbb{R}^{D}$.

Definition 2. Given a d-dimensional affine subspace, A, we define

$$
\vec{a}_{A}:=\operatorname{argmin}_{\vec{x} \in A}\|\vec{x}\|_{2} .
$$

Thus, $A-\vec{a}_{A}=S_{A}$ and $\vec{a}_{A} \in S_{A}^{\perp}$.
Definition 3. Given an affine subspace A, we can define a projection onto A to be

$$
\Pi_{A} \vec{x}:=\Pi_{S_{A}} \vec{x}+\vec{a}_{A}, \forall \vec{x} \in \mathbb{R}^{D}
$$

where $\Pi_{S_{A}}$ is the projection onto S_{A}.
Definition 4. Given a subspace, $S, \tilde{d}-$ dimensional for $\tilde{d} \geq d \geq 1$, we will define

$$
\Pi_{d}(S)=\{\text { all d-dimensional affine subspaces of } S\} .
$$

2.2 Main Problem

Given $P=\left\{\vec{x}_{1}, \cdots, \vec{x}_{N}\right\} \subseteq \mathbb{R}^{D}$, we want to estimate

$$
R_{d}(P)=\inf _{A \in \Pi_{d}\left(\mathbb{R}^{D}\right)} R_{\infty}(A, P):=\inf _{A \in \Pi_{d}\left(\mathbb{R}^{D}\right)}\left(\max _{j=1, \cdots, N}\left\|\vec{x}_{j}-\Pi_{A} \vec{x}_{j}\right\|_{2}\right)
$$

- How quickly can we find a $\tilde{A} \in \Pi_{d}\left(\mathbb{R}^{D}\right)$ such that $R_{\infty}(\tilde{A}, P) \approx R_{d}(P)$?
- NOTE : This is related to bounding box/shape problems in computational geometry.

- Assumptions about P :

1. $\overrightarrow{0} \in P$
2. $\vec{x}_{j} \in P \Leftrightarrow-\vec{x}_{j} \in P$

2.3 Solving the Problem

Note that $R_{d}(P)$ can be found by solving the following optimization problem:

$$
R_{d}^{2}(P):=\min \alpha
$$

satisfying the constraints:

1. $\sum_{i=1}^{D-d}<\vec{x}_{j}, \vec{y}_{i}>^{2} \leq \alpha, \forall \vec{x}_{j} \in P$
2. $\left\|\vec{y}_{i}\right\|=1, i=1, \cdots, D-d$.
3. $\left\langle\vec{y}_{i}, \vec{y}_{k}\right\rangle=0, i \neq k$

This problem finds $R_{d}(P)$ because:

- An optimal d-dimensional subspace A with $R_{\infty}(A, P)=R_{d}(P)$ will be given by $\left(\operatorname{span}\left\{\vec{y}_{1}, \cdots, \vec{y}_{D-d}\right\}\right)^{\perp}$. That is, we are finding an orthonormal basis for A^{\perp}.
- We are trying to minimize $\left\|\left(I-\Pi_{A}\right) \vec{x}_{j}\right\|_{2}^{2}=\sum_{i=1}^{D-d}<\vec{x}_{j}, \vec{y}_{i}>^{2}$ over all $j=1, \ldots, N$
- Here, α and the entries of $\vec{y}_{1}, \cdots, \vec{y}_{D-d} \in \mathbb{R}^{D}$ are the variables. There are $D(D-d)+1$ total.

2.4 A convex relaxation of the problem $[\operatorname{SDP}(2)]$

Consider this related optimization problem:

Calculate $\tilde{\alpha}:=$ the minimal $\alpha \in \mathbb{R}^{+}$satisfying the following constraints for some $Y \in S^{D}$
1.

$$
\begin{aligned}
\vec{x}_{j}^{T} Y \vec{x}_{j} & =\operatorname{Trace}\left(\vec{x}_{j} \vec{x}_{j}^{T} Y\right) \leq \alpha, \forall \vec{x}_{j} \in P . \\
& =\sum_{k=1}^{D} Y_{k k}\left(x_{j}\right)_{k}^{2}+2 \sum_{k=1}^{D} \sum_{l=k+1}^{D} Y_{l, k}\left(x_{j}\right)_{l}\left(x_{j}\right)_{k} \leq \alpha, \forall \vec{x}_{j} \in P .
\end{aligned}
$$

(Notice that this is linear in the entries of Y.)
2. $\operatorname{trace}(Y)=D-d$.
3. $I-Y \succeq 0$.
4. $Y \succeq 0$.

This problem can be solved as a semidefinite program! Note that:

- The variables are α, and the independent entries of $Y \in S^{D}$. There are $\frac{D(D+1)}{2}+1$ total variables.
- Constraint 1 is linear in the variables \Rightarrow it is OK for an SDP.
- Constraint 2 is a linear equality constraint in the variables \& so it is OK for an SDP. It implies that the eigenvalues of Y sum to $D-d$.
- Constraint $3: I-Y \succeq 0 \Rightarrow I \succeq Y \Rightarrow$ All the eigenvalues of Y are ≤ 1.
- Constraint 4: All the eigenvalues of Y should be nonnegative.
- Constraints 3 and 4 force all eigenvalues of Y to belong to $[0,1]$.
- Thus, $\tilde{\alpha}$ can be computed via an SDP.
- What's left : Show that $\tilde{\alpha}$ has something to do with $R_{d}(P)$!

2.5 Homework Problems(due Feb 11th(Tue.))

homework 1. Let $\bar{P}:=\left(P-\vec{x}_{1}\right) \cup\left(\vec{x}_{1}-P\right)$ where $P=\left\{\vec{x}_{1}, \cdots, \vec{x}_{N}\right\}$
This is now both symmetric about the origin, and contains $\overrightarrow{0}$. Prove that $R_{d}(\bar{P}) \leq 2 R_{d}(P)$.
homework 2. Prove that any affine subspace A with $R_{\infty}(A, \bar{P})=R_{d}(\bar{P})$ will be a subspace (i.e., will have $\vec{a}_{A}=\overrightarrow{0}$).
Problem 3. Show that any optimal orthonormal basis for first optimization problem in section 2.3 , $\left\{\vec{y}_{1}, \cdots, \vec{y}_{D-d}\right\}$, satisfies all four constraints for the optimization problem in section 2.4 if we set $Y=\sum_{i=1}^{D-d} \vec{y}_{l} \bar{y}_{l}^{T}$. Conclude that $\tilde{\alpha} \leq R_{d}^{2}(P)$.
Hint: The fact that $\tilde{\alpha} \leq R_{d}^{2}(P)$ is related to an α you can achieve with this Y in Constraint 1 .

2.6 Showing that a solution to $[\operatorname{SDP}(2)]$ has something to do with $R_{d}(P)$

Lemma 1. Let $\tilde{Y} \in S^{D}$ be an optimal solution to [SDP(2)] in section 2.4. Then \tilde{Y} will have $r \geq D-d$ eigenvalues $\lambda_{1}, \cdots, \lambda_{r} \in(0,1]$ and r (orthogonal unit) eigenvectors $\tilde{v}_{1}, \cdots, \tilde{v}_{r}$ with the property that $\sum_{l=1} \lambda_{l}<\vec{x}_{j}, \vec{v}_{l}>^{2} \leq R_{d}^{2}(P), \forall \vec{x}_{j} \in P$.

Proof. Constraints 2 through 4 of $[\operatorname{SDP}(2)]$ in section 2.4 guarantee that we have $\lambda_{1}, \cdots, \lambda_{r} \in(0,1]$ for $r \geq D-d$. Also, their associated eigenvectors $\vec{v}_{1}, \cdots, \vec{v}_{r}$ are perpendicular. We have that

$$
\begin{array}{rlrl}
\sum_{l=1}^{r} \lambda_{l}<\vec{x}_{j}, \vec{v}_{l}>^{2} & =\operatorname{Trace}\left(\vec{x}_{j} \vec{x}_{j}^{T} \sum_{l=1}^{r} \lambda_{l} \vec{v}_{l} v_{v}^{T}\right) \\
& =\operatorname{Trace}\left(\vec{x}_{j} \vec{x}_{j}^{T} \tilde{Y}\right) & \\
& \leq \tilde{\alpha} & & (\text { by }[\operatorname{SDP}(2)] \text { Constraint } 1) \\
& \leq R_{d}^{2}(P) & & (\text { by Homework Problem } 3)
\end{array}
$$

holds for all $j=1, \ldots, N$.

