MTH 995-003: Intro to CS and Big Data

Spring 2014

Lecture 6 — Jan 23, 2014

Inst. Mark Iwen

Scribe: Bosu Choi

Contents

1	Ove	rview	1	
2	\mathbf{Sub}	space Approximation	ce Approximation 1	
	2.1	Definitions	1	
	2.2	Main Problem	2	
	2.3	Solving the Problem	3	
	2.4	A convex relaxation of the problem $[SDP(2)]$	3	
	2.5	Homework Problems (due Feb 11th (Tue.)) $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	4	
	2.6	Showing that a solution to $[SDP(2)]$ has something to do with $R_d(P)$	4	

1 Overview

In the last lecture, we discussed feasibility and PCA (i.e., subspace approximation with $\tau = 2$). In this lecture, we discuss subspace approximation with $\tau = \infty$.

2 Subspace Approximation

- In the case of $\tau = \infty$.
- Illustrate using SDP as part of "convex relaxation + rounding" strategy.

2.1 Definitions

Definition 1. A d-dimensional affine subspace, A, is a set of points $\{\vec{a} + \vec{x} | \vec{x} \in S_A\}$, where S_A is a d-dimensional subspace and $\vec{a} \in \mathbb{R}^D$.

Definition 2. Given a d-dimensional affine subspace, A, we define

 $\vec{a}_A := argmin_{\vec{x} \in A} \|\vec{x}\|_2.$

Thus, $A - \vec{a}_A = S_A$ and $\vec{a}_A \in S_A^{\perp}$.

Definition 3. Given an affine subspace A, we can define a projection onto A to be

$$\Pi_A \vec{x} := \Pi_{S_A} \vec{x} + \vec{a}_A, \forall \vec{x} \in \mathbb{R}^D$$

where Π_{S_A} is the projection onto S_A .

Definition 4. Given a subspace, S, \tilde{d} – dimensional for $\tilde{d} \ge d \ge 1$, we will define $\Pi_d(S) = \{all \ d - dimensional \ affine \ subspaces \ of \ S\}.$

2.2 Main Problem

Given $P = \{\vec{x}_1, \cdots, \vec{x}_N\} \subseteq \mathbb{R}^D$, we want to estimate

$$R_d(P) = inf_{A \in \Pi_d(\mathbb{R}^D)} R_\infty(A, P) := inf_{A \in \Pi_d(\mathbb{R}^D)} \left(max_{j=1, \cdots, N} \| \vec{x}_j - \Pi_A \vec{x}_j \|_2 \right)$$

- How quickly can we find a $\tilde{A} \in \Pi_d(\mathbb{R}^D)$ such that $R_{\infty}(\tilde{A}, P) \approx R_d(P)$?
- NOTE : This is related to bounding box/shape problems in computational geometry.

• Assumptions about *P*:

1.
$$\vec{0} \in P$$

2. $\vec{x}_j \in P \Leftrightarrow -\vec{x}_j \in P$

2.3 Solving the Problem

Note that $R_d(P)$ can be found by solving the following optimization problem:

$$R_d^2(P) := \min \alpha$$

satisfying the constraints:

1. $\sum_{i=1}^{D-d} < \vec{x}_j, \vec{y}_i >^2 \le \alpha, \ \forall \vec{x}_j \in P$

- 2. $\|\vec{y}_i\| = 1, \ i = 1, \cdots, D d.$
- 3. $\langle \vec{y}_i, \vec{y}_k \rangle = 0, \ i \neq k$

This problem finds $R_d(P)$ because:

- An optimal d-dimensional subspace A with $R_{\infty}(A, P) = R_d(P)$ will be given by $(\operatorname{span}\{\vec{y}_1, \cdots, \vec{y}_{D-d}\})^{\perp}$. That is, we are finding an orthonormal basis for A^{\perp} .
- We are trying to minimize $||(I \Pi_A)\vec{x}_j||_2^2 = \sum_{i=1}^{D-d} \langle \vec{x}_j, \vec{y}_i \rangle^2$ over all $j = 1, \dots, N$
- Here, α and the entries of $\vec{y}_1, \dots, \vec{y}_{D-d} \in \mathbb{R}^D$ are the variables. There are D(D-d) + 1 total.

2.4 A convex relaxation of the problem [SDP(2)]

Consider this related optimization problem:

Calculate $\tilde{\alpha} :=$ the minimal $\alpha \in \mathbb{R}^+$ satisfying the following constraints for some $Y \in S^D$

1.

$$\vec{x}_j^T Y \vec{x}_j = Trace(\vec{x}_j \vec{x}_j^T Y) \le \alpha, \forall \vec{x}_j \in P.$$

$$= \sum_{k=1}^D Y_{kk}(x_j)_k^2 + 2 \sum_{k=1}^D \sum_{l=k+1}^D Y_{l,k}(x_j)_l(x_j)_k \le \alpha, \forall \vec{x}_j \in P.$$

$$(N, V) = (N, V) = (N, V)$$

(Notice that this is linear in the entries of Y.)

- 2. trace(Y) = D d.
- 3. $I Y \succeq 0$.
- 4. $Y \succeq 0$.

This problem can be solved as a semidefinite program! Note that:

- The variables are α , and the independent entries of $Y \in S^D$. There are $\frac{D(D+1)}{2} + 1$ total variables.
- Constraint 1 is linear in the variables \Rightarrow it is OK for an SDP.
- Constraint 2 is a linear equality constraint in the variables & so it is OK for an SDP. It implies that the eigenvalues of Y sum to D d.
- Constraint 3 : $I Y \succeq 0 \Rightarrow I \succeq Y \Rightarrow$ All the eigenvalues of Y are ≤ 1 .
- Constraint 4: All the eigenvalues of Y should be nonnegative.
- Constraints 3 and 4 force all eigenvalues of Y to belong to [0, 1].
- Thus, $\tilde{\alpha}$ can be computed via an SDP.
- What's left : Show that $\tilde{\alpha}$ has something to do with $R_d(P)$!

2.5 Homework Problems(due Feb 11th(Tue.))

homework 1. Let $\bar{P} := (P - \vec{x}_1) \cup (\vec{x}_1 - P)$ where $P = \{\vec{x}_1, \dots, \vec{x}_N\}$ This is now both symmetric about the origin, and contains $\vec{0}$. Prove that $R_d(\bar{P}) \leq 2R_d(P)$.

homework 2. Prove that any affine subspace A with $R_{\infty}(A, \bar{P}) = R_d(\bar{P})$ will be a subspace (i.e., will have $\vec{a}_A = \vec{0}$).

Problem 3. Show that any optimal orthonormal basis for first optimization problem in section 2.3, $\{\vec{y}_1, \dots, \vec{y}_{D-d}\}$, satisfies all four constraints for the optimization problem in section 2.4 if we set $Y = \sum_{i=1}^{D-d} \vec{y}_i \vec{y}_i^T$. Conclude that $\tilde{\alpha} \leq R_d^2(P)$.

<u>Hint</u>: The fact that $\tilde{\alpha} \leq R_d^2(P)$ is related to an α you can achieve with this Y in Constraint 1.

2.6 Showing that a solution to [SDP(2)] has something to do with $R_d(P)$

Lemma 1. Let $\tilde{Y} \in S^D$ be an optimal solution to [SDP(2)] in section 2.4. Then \tilde{Y} will have $r \geq D - d$ eigenvalues $\lambda_1, \dots, \lambda_r \in (0, 1]$ and r (orthogonal unit) eigenvectors $\tilde{v}_1, \dots, \tilde{v}_r$ with the property that $\sum_{l=1} \lambda_l < \vec{x}_j, \vec{v}_l >^2 \leq R_d^2(P), \forall \vec{x}_j \in P$.

Proof. Constraints 2 through 4 of [SDP(2)] in section 2.4 guarantee that we have $\lambda_1, \dots, \lambda_r \in (0, 1]$ for $r \geq D - d$. Also, their associated eigenvectors $\vec{v}_1, \dots, \vec{v}_r$ are perpendicular. We have that

$$\sum_{l=1}^{r} \lambda_l < \vec{x}_j, \vec{v}_l >^2 = Trace\left(\vec{x}_j \vec{x}_j^T \sum_{l=1}^{r} \lambda_l \vec{v}_l \vec{v}_l^T\right)$$
$$= Trace(\vec{x}_j \vec{x}_j^T \tilde{Y})$$
$$\leq \tilde{\alpha} \qquad (by \ [\text{SDP}(2)] \ \text{Constraint 1})$$
$$\leq R_d^2(P) \qquad (by \ \text{Homework Problem 3})$$

holds for all $j = 1, \ldots, N$.