
MTH 995-003: Intro to CS and Big Data Spring 2014

Lecture 5 — Jan 21, 2014

Inst. Mark Iwen Scribe: Bosu Choi

Contents

1 Overview 1

2 SDP 1

2.1 Schur Complement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2.2 Homework Problem - due Jan 28th(Tue.) . . . . . . . . . . . . . . . . . . . . . . . . 2

3 Feasibility 2

4 PCA (i.e., using the SVD to approximate a point cloud with a hyperplane) 3

1 Overview

In the last lecture, we discussed how to cast problems as SDP. For this purpose, Schur Complement
Theorem is introduced. In this lecture, we prove this theroem and discuss feasiblity and PCA.

2 SDP

2.1 Schur Complement

Theorem 1. (Schur Complement) Suppose M ∈ SN has the block form,

M =

[
A B
BT C

]
.

Then, the following properties must hold

i) M > 0 iff (C > 0 and A−BC−1BT > 0).

ii) C > 0⇒ (M ≥ 0 iff A−BC−1BT ≥ 0).

iii) A > 0⇒ (M ≥ 0 iff C −BTA−1B ≥ 0).

iv) M > 0 iff (A > 0 and C −BTA−1B > 0).
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Proof: If C is invertible, then

M =

(
I BC−1

0 I

)(
A−BC−1BT 0

0 C

)(
I BC−1

0 I

)T
,

and if A is invertible, then

M =

(
I 0

BTA−1 I

)(
A 0
0 C −BTA−1B

)(
I 0

BTA−1 I

)T
.

If C ∈ SN is invertible, then

M � 0 ⇐⇒
(
A−BC−1BT 0

0 C

)
� 0 ⇐⇒ A−BC−1BT � 0 & C � 0.

All four cases can be proven by similar considerations.

2.2 Homework Problem - due Jan 28th(Tue.)

Homework 6 Let A ∈ RN×m, ~b ∈ RN and ~d ∈ Rm. Suppose that ~dT~x > 0 whenever A~x +~b ≥ 0
(component-wise). Formulate the following problem as an SDP

Minimize
(~cT~x)2

(~dT~x)
subject to A~x+~b ≥ 0.

hint : look at the last example and Schur Complement.

3 Feasibility

Definition 1. A point ~x ∈ Rm is feasible for an SDP in standard form if it satisfies

F (~x) = F0 +
∑

xjFj � 0.

Note. Interior point methods use a sequence of “barrier function” that approximate this constraint.
Here, however, we just want to demonstrate that the constraint can be tested “point-wise” in a
fairly straightforward fashion. The constraint is not so unmanageable!

Theorem 2. A matrix A ∈ SN is positive definite iff its pivots are all positive after it is reduced
to upper triangular form via Gaussian elimination.

Proof: Reduce A � 0 to upper triangular form (assuming no row swaps are necessary, which can be
accounted for separately). This is equivalent to finding a lower triangular L such that L−1A = Ũ .
Thus,

A = LDU where
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L : lower triangular matrix with ones on the diagonal
D : diagonal matrix with pivots on the diagonal
U : upper triangular matrix with ones on the diagonal

⇒ det(A) =
N∏
j=1

λj =
N∏
j=1

Dj,j

Here the λj are the eigenvalues of A.

Thus, det(A) is independent of L′s and U ′s off-diagonal entires. We take advantage of this by
defining

A1;2(t) :=


1 0 · · · 0

tL2,1 1 0
...

· · · · · · . . . 0
· · · · · · · · · 1

D


1 tU1,2 · · · · · ·
0 1 · · · · · ·
... 0

. . . · · ·
0 · · · 0 1

 ∈ SN
for all t ∈ [0, 1]. Note that L2,1 = U1,2 must hold.

Furthermore, notice that (i) A1;2(1) = A, (ii) A1;2(0) has zeros in its associated U1,2 and L2,1 entries,
(iii) the eigenvalues of A1;2(t) ∈ SN are always real numbers, and (iv) the eigenvalues change
continuously with t by Weyl’s perturbation bounds (Lecture 3, Theorem 2). Thus, det(A1;2(t)) =∏N
j=1Dj,j =

∏N
j=1 λj > 0 for all t ∈ [0, 1].

As t→ 0, none of the eigenvalues of A1;2(t) can change sign since, if they did, they would have to
become zero for some t (and then we’d have det(A1;2(t)) = 0, which can’t happen). Thus, sending
U1,2 and L2,1 to zero does not change the sign of any of the eigenvalues. Similarly, we can do this
for all off-diagonal entries of L and U (one row/column at a time). In the process, all eigenvalues
of A change continuously into the pivots Dj,j , and can’t change sign in the process. Thus, all the
pivots must be positive.

For more details on this test, read up on the Cholesky decomposition.

4 PCA (i.e., using the SVD to approximate a point cloud with a
hyperplane)

• Given P = {~x1, · · · , ~xN} ⊆ RD.

• Our fitness measure for an affine subspace H is Rτ (H,P ) = (
∑

~xj∈P d(~xj , H)τ )1/τ for some

τ ∈ R+. Here d(·, ·) is Hausdorff distance.

• Assume that P has mean 1
N

∑N
j=1 ~xj = ~0

• For τ = 2 we get a least squares approximation to P .
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• Review τ = 2 : This can be solved exactly in O(NDmin{N,D})-time

Goal : Minimize (R2(H,P ))2 =
∑N

~x∈P d(~xj , H)2 over all n < D dimensional subspace H.

• Let XP = (~x1, · · · , ~xN ) ∈ RD×N

• Represent an n-dimensional H(subspace) by a projection matrix ΠH ∈ RD×D(rank n) that
projects onto H.

(R2(H,P ))2 =
∑
~xj∈P

d(~xj , H)2

=
∑
~xj∈P

‖~xj −ΠH~xj‖22

= ‖XP −ΠHXP ‖2F (Recall ‖A‖2F =
∑∑

|aij |2)

= ‖(I −ΠH)XP ‖2F

• We want to minimize this ‖ · ‖F over all H. Recall that

‖A‖F =
√
trace(ATA)

=
√
trace(V Σ2V T ))

=
√
trace(Σ2) (when A = UΣV T , the SV D ofA)

=

√√√√ N∑
j=1

σj(A)2

So we want to minimize
∑min(N,D)

j=1 σj((I −ΠH)XP )2 over all H.

• If H is n-dimensional, (I −ΠH) is (D − n)-dimensional projection.

• Let XP = UΣV T (SVD of XP ).

• We should let I −ΠH project onto the subspace spanned by D − n columns of U associated
with σD, · · · , σn+1.
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To minimize R2(P,H) over H, we want to

1. calculate SVD of XP , XP = UΣV T .

2. set ΠH = UnU
T
n where Un =

(
~u1 · · · ~un ~0 · · ·~0

)
; U =

(
~u1 · · · ~uD

)
.
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