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1 Overview

In the last lecture, we discussed Singular Value Decomposition and its perturbation bounds, and
introduced Semi-definite Programming and Convexity. In this lecture, discuss Linear Programming
as a special case of Semi-definite Programming, and show examples of how to reduce other problems
through algebraic manipulations into linear or semi-definite programs.

2 Linear Programming (LP)

2.1 Standard Form

Minimize cTx subject to Ax− b ≥ 0.

Given constants are c ∈ Rm, b ∈ RN , and A ∈ RN×m. The minimization variables are x ∈ Rm.
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2.2 Examples

Example 1. We can re-express equality constraints in LP standard form.

Ax = b

⇒Ax ≥ b & Ax ≤ b

⇒Ax ≥ b &−Ax ≥ −b

⇒
(

A
−A

)
x ≥

(
b
−b

)
Equality constraints are OK for LP.

Example 2. Compressive Sensing Recovery, aka Basis Pursuit (BP). (See Ch.3 of [FR13].)

Minimize ||z||1 such that Az = y (= Ax, where x is the signal to be recovered), where A ∈ Rm×N

and m� N .

This problem can be solved as a LP by first introducing two new vectors to replace z ∈ RN as
variables. Let z+, z− ∈ RN with constraints z+ ≥ 0, z− ≥ 0 (i.e. with only non-negative entries –
we want to think of these as z = z+ − z−).

Then, we re-express the constraint as A(z+ − z−) = y, i.e.

(A|−A)

(
z+
z−

)
= y

The LP problem statement is then:

Minimize 〈(1, . . . , 1), (z+|z−)〉 subject to

(A|−A)

(
z+
z−

)
= y

z+ ≥ 0, z− ≥ 0

2.3 Homework Problems

Problem 5 In reference to Example 2, suppose that z∗ has minimal ||z||1 such that Az = y (BP).
Let z∗+ and z∗− be the solution to the LP. Show that

(z∗+)j > 0⇒ (z∗−)j = 0

(z∗−)j > 0⇒ (z∗+)j = 0

And deduce that
||z∗||1 = ||z∗+ − z∗−||1

i.e. both BP and LP solutions have the same l1-norm.
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2.4 Relation to Semi-definite Programming (SDP)

Every LP is also a SDP, since the linear coordinate-wise inequality Ax + b ≥ 0 can be expressed
as

Ax + b = (a1|a2| . . . |aN )x + b

= b +

N∑
j=1

xjaj

=

 b1 · · · 0
...

. . .
...

0 · · · bN

+
N∑
j=1

xj

 (aj)1 · · · 0
...

. . .
...

0 · · · (aj)N


= F(x) ≥ 0

• SDPs are a superset of CS recovery algorithms, at least as far as BP goes.

• Casting problems as SDPs, or approximating solutions using SDPs, often involves re-expressing
problem constraints using positive semi-definite matrices.

3 Casting Problems as SDPs

3.1 Examples

Example 3. Having two constraints G(x) ≥ 0 and F(x) ≥ 0 can be re-expressed as[
F(x) 0

0 G(x)

]
≥ 0

Example 4. Minimize the operator norm (i.e. the largest singular value) of a matrix A(x) =∑K
j=1 xjAj over all x ∈ RK , where Aj ∈ Rp×q.

We can cast this operator norm problem as a SDP. Introduce t ∈ R+ as an extra variable, so we
now have K + 1 variables (t,x). Then solve:
Minimize t subject to [

tI A(x)

A(x)T tI

]
≥ 0

which is equivalent to

F(x) =

[
tI 0
0 tI

]
+

K∑
j=1

xj

[
0 Aj

AT
j 0

]
≥ 0

Lemma 1. The minimal t is the minimal largest singular value, σ1, of A(x) over all x ∈ RK .

Proof: Fix x ∈ RK and let A(x) = A ∈ Rp×q. Then the constraint[
tI A(x)

A(x)T tI

]
≥ 0
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is the same as

[zT1 |zT2 ]

[
tI A

AT tI

] [
zT1
zT2

]
≥ 0

∀z1 ∈ Rp &∀z2 ∈ Rq

m

[zT1 |zT2 ]

[
tz1 + Az2
ATz1 + tz2

]
≥ 0

∀z1 ∈ Rp &∀z2 ∈ Rq

m
t||z1||22 + zT1 Az2 + zT2 ATz1 + t||z2||22 ≥ 0

∀z1 ∈ Rp &∀z2 ∈ Rq

This last expression is minimized when we choose z1&z2 from the SVD of A such that

z2 = v1 &z1 = −u1

where v1 ∈ Rq is the first column of V ∈ Rq×q, u1 ∈ Rp is the first column of U ∈ Rp×p, and
A = UΣVT is the SVD of A. The expression then becomes

2t− 2σ1 ≥ 0

which further reduces to t = σ1 when minimizing t.

3.2 Schur Complements

Suppose M ∈ SN has the block form

M =

[
A B
BT C

]
Then, the following properties must hold

i) M > 0 iff (C > 0 and A−BC−1BT > 0).

ii) C > 0⇒ (M ≥ 0 iff A−BC−1BT ≥ 0).

iii) A > 0⇒ (M ≥ 0 iff C−BTA−1B ≥ 0).

iv) M > 0 iff (A > 0 and C−BTA−1B > 0).
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