MTH 995-003: Intro to CS and Big Data	Spring 2014	
Lecture 4 - Jan 16, 2014		
Inst. Mark Iwen		Scribe: Islam Badreldin

Contents

1 Overview 1
2 Linear Programming (LP) 1
2.1 Standard Form 1
2.2 Examples 2
2.3 Homework Problems 2
2.4 Relation to Semi-definite Programming (SDP) 3
3 Casting Problems as SDPs 3
3.1 Examples 3
3.2 Schur Complements 4

1 Overview

In the last lecture, we discussed Singular Value Decomposition and its perturbation bounds, and introduced Semi-definite Programming and Convexity. In this lecture, discuss Linear Programming as a special case of Semi-definite Programming, and show examples of how to reduce other problems through algebraic manipulations into linear or semi-definite programs.

2 Linear Programming (LP)

2.1 Standard Form

Minimize $\mathbf{c}^{\mathrm{T}} \mathbf{x}$ subject to $\mathbf{A x}-\mathbf{b} \geq \mathbf{0}$.
Given constants are $\mathbf{c} \in \mathbb{R}^{m}, \mathbf{b} \in \mathbb{R}^{N}$, and $\mathbf{A} \in \mathbb{R}^{N \times m}$. The minimization variables are $\mathbf{x} \in \mathbb{R}^{m}$.

2.2 Examples

Example 1. We can re-express equality constraints in LP standard form.

$$
\begin{aligned}
& \mathbf{A x}=\mathbf{b} \\
\Rightarrow & \mathbf{A x} \geq \mathbf{b} \& \mathbf{A x} \leq \mathbf{b} \\
\Rightarrow & \mathbf{A x} \geq \mathbf{b} \&-\mathbf{A x} \geq-\mathbf{b} \\
\Rightarrow & \binom{\mathbf{A}}{-\mathbf{A}} \mathbf{x} \geq\binom{\mathbf{b}}{-\mathbf{b}}
\end{aligned}
$$

Equality constraints are OK for LP.
Example 2. Compressive Sensing Recovery, aka Basis Pursuit (BP). (See Ch. 3 of [FR13].)
Minimize $\|\mathbf{z}\|_{1}$ such that $\mathbf{A z}=\mathbf{y}\left(=\mathbf{A x}\right.$, where \mathbf{x} is the signal to be recovered), where $\mathbf{A} \in \mathbb{R}^{m \times N}$ and $m \ll N$.

This problem can be solved as a LP by first introducing two new vectors to replace $\mathbf{z} \in \mathbb{R}^{N}$ as variables. Let $\mathbf{z}_{+}, \mathbf{z}_{-} \in \mathbb{R}^{N}$ with constraints $\mathbf{z}_{+} \geq \mathbf{0}, \mathbf{z}_{-} \geq \mathbf{0}$ (i.e. with only non-negative entries we want to think of these as $\left.\mathbf{z}=\mathbf{z}_{+}-\mathbf{z}_{-}\right)$.
Then, we re-express the constraint as $\mathbf{A}\left(\mathbf{z}_{+}-\mathbf{z}_{-}\right)=\mathbf{y}$, i.e.

$$
(\mathbf{A} \mid-\mathbf{A})\binom{\mathbf{z}_{+}}{\mathbf{z}_{-}}=\mathbf{y}
$$

The LP problem statement is then:
Minimize $\left\langle(1, \ldots, 1),\left(\mathbf{z}_{+} \mid \mathbf{z}_{-}\right)\right\rangle$subject to

$$
\begin{aligned}
& (\mathbf{A} \mid-\mathbf{A})\binom{\mathbf{z}_{+}}{\mathbf{z}_{-}}=\mathbf{y} \\
& \mathbf{z}_{+} \geq \mathbf{0}, \mathbf{z}_{-} \geq \mathbf{0}
\end{aligned}
$$

2.3 Homework Problems

Problem 5 In reference to Example 2, suppose that \mathbf{z}^{*} has minimal $\|\mathbf{z}\|_{1}$ such that $\mathbf{A z}=\mathbf{y}(\mathrm{BP})$. Let $\mathbf{z}^{*}+$ and \mathbf{z}^{*} - be the solution to the LP. Show that

$$
\begin{aligned}
\left(z_{+}^{*}\right)_{j}>0 & \Rightarrow\left(z_{-}^{*}\right)_{j}=0 \\
\left(z_{-}^{*}\right)_{j}>0 & \Rightarrow\left(z_{+}^{*}\right)_{j}=0
\end{aligned}
$$

And deduce that

$$
\left\|\mathbf{z}^{*}\right\|_{1}=\left\|\mathbf{z}^{*}{ }_{+}-\mathbf{z}^{*}{ }_{-}\right\|_{1}
$$

i.e. both BP and LP solutions have the same l_{1}-norm.

2.4 Relation to Semi-definite Programming (SDP)

Every LP is also a SDP, since the linear coordinate-wise inequality $\mathbf{A x}+\mathbf{b} \geq \mathbf{0}$ can be expressed as

$$
\begin{aligned}
\mathbf{A x}+\mathbf{b} & =\left(\mathbf{a}_{1}\left|\mathbf{a}_{2}\right| \ldots \mid \mathbf{a}_{N}\right) \mathbf{x}+\mathbf{b} \\
& =\mathbf{b}+\sum_{j=1}^{N} x_{j} \mathbf{a}_{j} \\
& =\left(\begin{array}{ccc}
b_{1} & \cdots & 0 \\
\vdots & \ddots & \vdots \\
0 & \cdots & b_{N}
\end{array}\right)+\sum_{j=1}^{N} x_{j}\left(\begin{array}{ccc}
\left(a_{j}\right)_{1} & \cdots & 0 \\
\vdots & \ddots & \vdots \\
0 & \cdots & \left(a_{j}\right)_{N}
\end{array}\right) \\
& =\mathbf{F}(\mathbf{x}) \geq 0
\end{aligned}
$$

- SDPs are a superset of CS recovery algorithms, at least as far as BP goes.
- Casting problems as SDPs, or approximating solutions using SDPs, often involves re-expressing problem constraints using positive semi-definite matrices.

3 Casting Problems as SDPs

3.1 Examples

Example 3. Having two constraints $\mathbf{G}(\mathbf{x}) \geq 0$ and $\mathbf{F}(\mathbf{x}) \geq 0$ can be re-expressed as

$$
\left[\begin{array}{cc}
\mathbf{F}(\mathbf{x}) & \mathbf{0} \\
\mathbf{0} & \mathbf{G}(\mathbf{x})
\end{array}\right] \geq 0
$$

Example 4. Minimize the operator norm (i.e. the largest singular value) of a matrix $\mathbf{A}(\mathbf{x})=$ $\sum_{j=1}^{K} x_{j} \mathbf{A}_{j}$ over all $\mathbf{x} \in \mathbb{R}^{K}$, where $\mathbf{A}_{j} \in \mathbb{R}^{p \times q}$.

We can cast this operator norm problem as a SDP. Introduce $t \in \mathbb{R}^{+}$as an extra variable, so we now have $K+1$ variables (t, \mathbf{x}). Then solve:
Minimize t subject to

$$
\left[\begin{array}{cc}
t \mathbf{I} & \mathbf{A}(\mathbf{x}) \\
\mathbf{A}(\mathbf{x})^{\mathrm{T}} & t \mathbf{I}
\end{array}\right] \geq 0
$$

which is equivalent to

$$
\mathbf{F}(\mathbf{x})=\left[\begin{array}{cc}
t \mathbf{I} & \mathbf{0} \\
\mathbf{0} & t \mathbf{I}
\end{array}\right]+\sum_{j=1}^{K} x_{j}\left[\begin{array}{cc}
\mathbf{0} & \mathbf{A}_{j} \\
\mathbf{A}_{j}^{\mathrm{T}} & \mathbf{0}
\end{array}\right] \geq 0
$$

Lemma 1. The minimal t is the minimal largest singular value, σ_{1}, of $\mathbf{A}(\mathbf{x})$ over all $\mathbf{x} \in \mathbb{R}^{K}$.
Proof: Fix $\mathbf{x} \in \mathbb{R}^{K}$ and let $\mathbf{A}(\mathbf{x})=\mathbf{A} \in \mathbb{R}^{p \times q}$. Then the constraint

$$
\left[\begin{array}{cc}
t \mathbf{I} & \mathbf{A}(\mathbf{x}) \\
\mathbf{A}(\mathbf{x})^{\mathrm{T}} & t \mathbf{I}
\end{array}\right] \geq 0
$$

is the same as

$$
\begin{aligned}
& {\left[\mathbf{z}_{1}^{\mathrm{T}} \mid \mathbf{z}_{2}^{\mathrm{T}}\right]\left[\begin{array}{cc}
t \mathbf{I} & \mathbf{A} \\
\mathbf{A}^{\mathrm{T}} & t \mathbf{I}
\end{array}\right]\left[\begin{array}{c}
\mathbf{z}_{1}^{\mathrm{T}} \\
\mathbf{z}_{2}^{\mathrm{T}}
\end{array}\right] } \geq 0 \\
& \forall \mathbf{z}_{1} \in \mathbb{R}^{p} \& \forall \mathbf{z}_{2} \in \mathbb{R}^{q} \\
& \hat{\Downarrow} \\
& {\left[\mathbf{z}_{1}^{\mathrm{T}} \mid \mathbf{z}_{2}^{\mathrm{T}}\right]\left[\begin{array}{c}
t \mathbf{z}_{1}+\mathbf{A} \mathbf{z}_{2} \\
\mathbf{A}^{\mathrm{T}} \mathbf{z}_{1}+t \mathbf{z}_{2}
\end{array}\right] } \geq 0 \\
& \forall \mathbf{z}_{1} \in \mathbb{R}^{p} \& \forall \mathbf{z}_{2} \in \mathbb{R}^{q} \\
& \hat{\mathbb{y}} \\
& t\left|\left|\mathbf{z}_{1}\left\|_{2}^{2}+\mathbf{z}_{1}^{\mathrm{T}} \mathbf{A} \mathbf{z}_{2}+\mathbf{z}_{2}^{\mathrm{T}} \mathbf{A}^{\mathrm{T}} \mathbf{z}_{1}+t| | \mathbf{z}_{2}\right\|_{2}^{2}\right.\right. \geq 0 \\
& \forall \mathbf{z}_{1} \in \mathbb{R}^{p} \& \forall \mathbf{z}_{2} \in \mathbb{R}^{q}
\end{aligned}
$$

This last expression is minimized when we choose $\mathbf{z}_{1} \& \mathbf{z}_{2}$ from the SVD of \mathbf{A} such that

$$
\mathbf{z}_{2}=\mathbf{v}_{1} \quad \& \mathbf{z}_{1}=-\mathbf{u}_{1}
$$

where $\mathbf{v}_{1} \in \mathbb{R}^{q}$ is the first column of $\mathbf{V} \in \mathbb{R}^{q \times q}, \mathbf{u}_{1} \in \mathbb{R}^{p}$ is the first column of $\mathbf{U} \in \mathbb{R}^{p \times p}$, and $\mathbf{A}=\mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{\mathrm{T}}$ is the SVD of \mathbf{A}. The expression then becomes

$$
2 t-2 \sigma_{1} \geq 0
$$

which further reduces to $t=\sigma_{1}$ when minimizing t.

3.2 Schur Complements

Suppose $\mathbf{M} \in \mathbb{S}^{N}$ has the block form

$$
\mathbf{M}=\left[\begin{array}{cc}
\mathbf{A} & \mathbf{B} \\
\mathbf{B}^{T} & \mathbf{C}
\end{array}\right]
$$

Then, the following properties must hold
i) $\mathbf{M}>0$ iff $\left(\mathbf{C}>0\right.$ and $\left.\mathbf{A}-\mathbf{B C}^{\mathbf{1}} \mathbf{B}^{\mathrm{T}}>0\right)$.
ii) $\mathbf{C}>0 \Rightarrow\left(\mathbf{M} \geq 0\right.$ iff $\left.\mathbf{A}-\mathbf{B C}^{-\mathbf{1}} \mathbf{B}^{\mathrm{T}} \geq 0\right)$.
iii) $\mathbf{A}>0 \Rightarrow\left(\mathbf{M} \geq 0\right.$ iff $\left.\mathbf{C}-\mathbf{B}^{\mathrm{T}} \mathbf{A}^{\mathbf{1}} \mathbf{B} \geq 0\right)$.
iv) $\mathbf{M}>0$ iff $\left(\mathbf{A}>0\right.$ and $\left.\mathbf{C}-\mathbf{B}^{\mathrm{T}} \mathbf{A}^{\mathbf{1}} \mathbf{B}>0\right)$.

References

[FR13] Simon Foucart and Holger Rauhut. A Mathematical Introduction to Compressive Sensing. Birkhäuser Basel, 2013.

