MTH 995-003: Intro to CS and Big Data

Spring 2014

Lecture 4 — Jan 16, 2014

Inst. Mark Iwen

Scribe: Islam Badreldin

Contents

1	Ove	rview	1
2	Line	near Programming (LP) 1	
	2.1	Standard Form	1
	2.2	Examples	2
	2.3	Homework Problems	2
	2.4	Relation to Semi-definite Programming (SDP)	3
~			
3	Cas	Casting Problems as SDPs 3	
	3.1	Examples	3
	3.2	Schur Complements	4

1 Overview

In the last lecture, we discussed Singular Value Decomposition and its perturbation bounds, and introduced Semi-definite Programming and Convexity. In this lecture, discuss Linear Programming as a special case of Semi-definite Programming, and show examples of how to reduce other problems through algebraic manipulations into linear or semi-definite programs.

2 Linear Programming (LP)

2.1 Standard Form

Minimize $\mathbf{c}^{\mathrm{T}}\mathbf{x}$ subject to $\mathbf{A}\mathbf{x} - \mathbf{b} \ge \mathbf{0}$.

Given constants are $\mathbf{c} \in \mathbb{R}^m$, $\mathbf{b} \in \mathbb{R}^N$, and $\mathbf{A} \in \mathbb{R}^{N \times m}$. The minimization variables are $\mathbf{x} \in \mathbb{R}^m$.

2.2 Examples

Example 1. We can re-express equality constraints in LP standard form.

$$\begin{aligned} \mathbf{A}\mathbf{x} &= \mathbf{b} \\ \Rightarrow \mathbf{A}\mathbf{x} &\geq \mathbf{b} \& \mathbf{A}\mathbf{x} \leq \mathbf{b} \\ \Rightarrow \mathbf{A}\mathbf{x} &\geq \mathbf{b} \& -\mathbf{A}\mathbf{x} \geq -\mathbf{b} \\ \Rightarrow \begin{pmatrix} \mathbf{A} \\ -\mathbf{A} \end{pmatrix} \mathbf{x} \geq \begin{pmatrix} \mathbf{b} \\ -\mathbf{b} \end{pmatrix} \end{aligned}$$

Equality constraints are OK for LP.

Example 2. Compressive Sensing Recovery, aka Basis Pursuit (BP). (See Ch.3 of [FR13].)

Minimize $||\mathbf{z}||_1$ such that $\mathbf{A}\mathbf{z} = \mathbf{y}$ (= $\mathbf{A}\mathbf{x}$, where \mathbf{x} is the signal to be recovered), where $\mathbf{A} \in \mathbb{R}^{m \times N}$ and $m \ll N$.

This problem can be solved as a LP by first introducing two new vectors to replace $\mathbf{z} \in \mathbb{R}^N$ as variables. Let $\mathbf{z}_+, \mathbf{z}_- \in \mathbb{R}^N$ with constraints $\mathbf{z}_+ \ge \mathbf{0}, \mathbf{z}_- \ge \mathbf{0}$ (i.e. with only non-negative entries – we want to think of these as $\mathbf{z} = \mathbf{z}_+ - \mathbf{z}_-$).

Then, we re-express the constraint as $\mathbf{A}(\mathbf{z}_{+} - \mathbf{z}_{-}) = \mathbf{y}$, *i.e.*

$$(\mathbf{A}|-\mathbf{A})\left(\begin{array}{c}\mathbf{z}_+\\\mathbf{z}_-\end{array}\right)=\mathbf{y}$$

The LP problem statement is then:

Minimize $\langle (1, \ldots, 1), (\mathbf{z}_+ | \mathbf{z}_-) \rangle$ subject to

$$\begin{aligned} (\mathbf{A}|{-}\mathbf{A}) \left(\begin{array}{c} \mathbf{z}_+ \\ \mathbf{z}_- \end{array}\right) &= \mathbf{y} \\ \mathbf{z}_+ &\geq \mathbf{0}, \mathbf{z}_- &\geq \mathbf{0} \end{aligned}$$

2.3 Homework Problems

Problem 5 In reference to Example 2, suppose that \mathbf{z}^* has minimal $||\mathbf{z}||_1$ such that $\mathbf{A}\mathbf{z} = \mathbf{y}$ (BP). Let \mathbf{z}^*_+ and \mathbf{z}^*_- be the solution to the LP. Show that

$$(z_+^*)_j > 0 \Rightarrow (z_-^*)_j = 0$$
$$(z_-^*)_j > 0 \Rightarrow (z_+^*)_j = 0$$

And deduce that

$$||\mathbf{z}^*||_1 = ||\mathbf{z}^*_+ - \mathbf{z}^*_-||_1$$

i.e. both BP and LP solutions have the same l_1 -norm.

2.4 Relation to Semi-definite Programming (SDP)

Every LP is also a SDP, since the linear coordinate-wise inequality $\mathbf{Ax} + \mathbf{b} \ge \mathbf{0}$ can be expressed as

$$\mathbf{A}\mathbf{x} + \mathbf{b} = (\mathbf{a}_1 | \mathbf{a}_2 | \dots | \mathbf{a}_N) \mathbf{x} + \mathbf{b}$$

= $\mathbf{b} + \sum_{j=1}^N x_j \mathbf{a}_j$
= $\begin{pmatrix} b_1 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & b_N \end{pmatrix} + \sum_{j=1}^N x_j \begin{pmatrix} (a_j)_1 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & (a_j)_N \end{pmatrix}$
= $\mathbf{F}(\mathbf{x}) \ge 0$

- SDPs are a **superset** of CS recovery algorithms, at least as far as BP goes.
- Casting problems as SDPs, or approximating solutions using SDPs, often involves re-expressing problem constraints using positive semi-definite matrices.

3 Casting Problems as SDPs

3.1 Examples

Example 3. Having two constraints $\mathbf{G}(\mathbf{x}) \geq 0$ and $\mathbf{F}(\mathbf{x}) \geq 0$ can be re-expressed as

$$\begin{bmatrix} \mathbf{F}(\mathbf{x}) & \mathbf{0} \\ \mathbf{0} & \mathbf{G}(\mathbf{x}) \end{bmatrix} \ge 0$$

Example 4. Minimize the operator norm (i.e. the largest singular value) of a matrix $\mathbf{A}(\mathbf{x}) = \sum_{j=1}^{K} x_j \mathbf{A}_j$ over all $\mathbf{x} \in \mathbb{R}^K$, where $\mathbf{A}_j \in \mathbb{R}^{p \times q}$.

We can cast this operator norm problem as a SDP. Introduce $t \in \mathbb{R}^+$ as an extra variable, so we now have K + 1 variables (t, \mathbf{x}) . Then solve: Minimize t subject to

$$\begin{bmatrix} t\mathbf{I} & \mathbf{A}(\mathbf{x}) \\ \mathbf{A}(\mathbf{x})^{\mathrm{T}} & t\mathbf{I} \end{bmatrix} \geq 0$$

which is equivalent to

$$\mathbf{F}(\mathbf{x}) = \begin{bmatrix} t\mathbf{I} & \mathbf{0} \\ \mathbf{0} & t\mathbf{I} \end{bmatrix} + \sum_{j=1}^{K} x_j \begin{bmatrix} \mathbf{0} & \mathbf{A}_j \\ \mathbf{A}_j^{\mathrm{T}} & \mathbf{0} \end{bmatrix} \ge 0$$

Lemma 1. The minimal t is the minimal largest singular value, σ_1 , of $\mathbf{A}(\mathbf{x})$ over all $\mathbf{x} \in \mathbb{R}^K$.

Proof: Fix $\mathbf{x} \in \mathbb{R}^{K}$ and let $\mathbf{A}(\mathbf{x}) = \mathbf{A} \in \mathbb{R}^{p \times q}$. Then the constraint

$$\begin{bmatrix} t\mathbf{I} & \mathbf{A}(\mathbf{x}) \\ \mathbf{A}(\mathbf{x})^{\mathrm{T}} & t\mathbf{I} \end{bmatrix} \ge 0$$

is the same as

$$\begin{aligned} \left[\mathbf{z}_{1}^{\mathrm{T}}|\mathbf{z}_{2}^{\mathrm{T}}\right] \begin{bmatrix} t\mathbf{I} & \mathbf{A} \\ \mathbf{A}^{\mathrm{T}} & t\mathbf{I} \end{bmatrix} \begin{bmatrix} \mathbf{z}_{1}^{\mathrm{T}} \\ \mathbf{z}_{2}^{\mathrm{T}} \end{bmatrix} &\geq 0 \\ & \forall \mathbf{z}_{1} \in \mathbb{R}^{p} \, \& \forall \mathbf{z}_{2} \in \mathbb{R}^{q} \\ & \uparrow \\ & \mathbf{z}_{1} \\ \left[\mathbf{z}_{1}^{\mathrm{T}}|\mathbf{z}_{2}^{\mathrm{T}}\right] \begin{bmatrix} t\mathbf{z}_{1} + \mathbf{A}\mathbf{z}_{2} \\ \mathbf{A}^{\mathrm{T}}\mathbf{z}_{1} + t\mathbf{z}_{2} \end{bmatrix} &\geq 0 \\ & \forall \mathbf{z}_{1} \in \mathbb{R}^{p} \, \& \forall \mathbf{z}_{2} \in \mathbb{R}^{q} \\ & \uparrow \\ & \mathbf{z}_{1} \\ & \mathbf{z}_{1}$$

This last expression is minimized when we choose $\mathbf{z}_1 \& \mathbf{z}_2$ from the SVD of **A** such that

$$\mathbf{z}_2 = \mathbf{v}_1 \quad \& \mathbf{z}_1 = -\mathbf{u}_1$$

where $\mathbf{v}_1 \in \mathbb{R}^q$ is the first column of $\mathbf{V} \in \mathbb{R}^{q \times q}$, $\mathbf{u}_1 \in \mathbb{R}^p$ is the first column of $\mathbf{U} \in \mathbb{R}^{p \times p}$, and $\mathbf{A} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^{\mathrm{T}}$ is the SVD of \mathbf{A} . The expression then becomes

$$2t - 2\sigma_1 \ge 0$$

which further reduces to $t = \sigma_1$ when minimizing t.

3.2 Schur Complements

Suppose $\mathbf{M} \in \mathbb{S}^N$ has the block form

$$\mathbf{M} = \begin{bmatrix} \mathbf{A} & \mathbf{B} \\ \mathbf{B}^{\mathrm{T}} & \mathbf{C} \end{bmatrix}$$

Then, the following properties must hold

- i) $\mathbf{M} > 0$ iff $(\mathbf{C} > 0$ and $\mathbf{A} \mathbf{B}\mathbf{C}^{-1}\mathbf{B}^{\mathrm{T}} > 0)$.
- ii) $\mathbf{C} > 0 \Rightarrow (\mathbf{M} \ge 0 \text{ iff } \mathbf{A} \mathbf{B}\mathbf{C}^{-1}\mathbf{B}^{\mathrm{T}} \ge 0).$
- iii) $\mathbf{A} > 0 \Rightarrow (\mathbf{M} \ge 0 \text{ iff } \mathbf{C} \mathbf{B}^{\mathrm{T}} \mathbf{A}^{-1} \mathbf{B} \ge 0).$
- iv) $\mathbf{M} > 0$ iff $(\mathbf{A} > 0$ and $\mathbf{C} \mathbf{B}^{\mathrm{T}} \mathbf{A}^{-1} \mathbf{B} > 0)$.

References

[FR13] Simon Foucart and Holger Rauhut. A Mathematical Introduction to Compressive Sensing. Birkhäuser Basel, 2013.