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1 Nonequispaced DFT Methods

N_1

Goal: Rapidly compute f(z) := > 2 f(w)e2™@z at M = O(N) — values x1, T2, ... 25 € [0,1).

m‘z

e The values 7 ...x)s are not exactly % for j € [N] so we cannot directly use an FFT.

e Naive method takes O(N?)— floating point operations. We want to do it faster.

1.1 Method 1 (see [1])

Let 6 : [0,1] — C be periodic with an absolutely convergent Fourier series.

For example, assume that:

1. (k) := fol d(x)e 2 dy ke 7 decays like |0(k)| < e.maX{l, “k\ - % _m}, for some m >

1VkeZ\ [—%,%), and

2. 10(k)| > e,k € [-5, 5)

for some € € R (not too smalll). We can then set

fw) . N N
i fwel-3.%)
0 otherwise

Set ¢, :=

Choose o > 1 such that N € N is even.

aN _ milw 7
Compute ¢; := ﬁ Zwi_clﬂ éwe2a1\lf L € [aN]. We have ), |¢| < %
2

Computing ¢, VI € [aN] takes O(aN -log(aN))— time using the FFT. We have that

a1 .
f(z) = Z gg:ié(w)ezm‘” ( set f(w) =0 for w ¢ [_];f’ ];]>>
f g eVl oo w—p aN_1 i w—p
:Z f:(w) Z i(p)e2in (i\f Z €a<N>> <%N Z s 5(w_p)>
o Ow) _aN NI a1



_ O{?;c, [0 <g; - oizv> Lo (me : ((a —21)N>1m>]
e ooty () )
1=0

This expression is useful if 8 is a nice function that

i. has m large (s.t. it decays nicely in Fourier), and

ii. also has 6(z) decay very quickly away from 0.

e One good choice is to take

0( Hb 1/22 (aN(v+r)) /b for b e Rt
reZ

and then we approximate 6(v) with

Y(v) = (1) V23" e @V oy (aN (v + 1)
rez

for1 <b< ﬁ’ where n < N is small.

e Making this choice gives an error O <||f|]16_b”2(1_§)) .

1.1.1 Wrap Up

Decide once on a function #, and then compute 6 and ) “once”. Pick a € RT. Then,

Given: f(z) =Y, f(w)e?™@* and x; ...z ).

QN TIW
Compute weights ¢; = =& > ! <9(“’))> eTaN VI € [aN].

r3 o 1 alNT; .
Set f(xj) = }—giélogz 1) ClaNa; |+ ° ) (xj _ ]\;J\’,JH) ,Vje[M]+1

Each |f(z;) — f(z;)| <O <||f||1 ﬁﬂQ(l_é))

Total runtime of 2- step procedure is O (aN log(aN) + N log (%))



1.2 Method 2 (Another approach) [2]

N

o Given: f(z) =3 2_

oy f(w)erm T we again want to compute f at ...z € [0,1).

M\Z

e Choose M =29 > % (power of 2 for FFT efficiency).

o Let y; = ﬁ for j € [M].
e Note that f<1 (2) = 3, f(w)(2miw)e2miws

2 .
O (a) = 2, flw)(@miw)?e>ier
.

( )(27rzw)l 2miwx

O(x) =
e Compute f l)(yj) for all [ € [p],j € [M] in O(IN log N)— time via [— FFTs.

_ - ) (») - JU
e Taylor’s Theorem tells us that f(z;) = Zf:ol ®) (yj)(x] l,yj) +4 I;!(é) (xzj — g;)P where g; is
the point y; closest to x;, and § lies between x; and ;.

e Note that, the error term is 171 (5)" 1(727r) (zx)" < ”J;%
= p = O(log N) suffices for decent accuracy most days.
Therefore, O(N log? N)— time gives “decent accuracy”.

If the frequencies, w, are not integers — but we want to evaluate the sums at equally spaced points
— we can use essentially the same techniques to compute the sums rapidly.
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