MTH 995-003: Intro to CS and Big Data

Spring 2014

Scribe: Atreyee Majumder

Lecture 31 – April 22, 2014

Inst. Mark Iwen

1 Nonequispaced DFT Methods

Goal: Rapidly compute $f(x) := \sum_{\omega = -\frac{N}{2}}^{\frac{N}{2} - 1} \hat{f}(\omega) e^{2\pi i \omega x}$ at M = O(N) - values $x_1, x_2, \dots x_M \in [0, 1)$.

- The values $x_1 \dots x_M$ are not exactly $\frac{j}{N}$ for $j \in [N]$ so we cannot directly use an FFT.
- Naive method takes $O(N^2)$ floating point operations. We want to do it faster.

1.1 Method 1 (see [1])

Let $\theta:[0,1]\to\mathbb{C}$ be periodic with an absolutely convergent Fourier series.

For example, assume that:

1.
$$\hat{\theta}(k) := \int_0^1 \phi(x) e^{-2\pi i k x} dx, k \in \mathbb{Z}$$
 decays like $|\hat{\theta}(k)| < \epsilon \cdot \max\left\{1, \left||k| - \frac{N}{2}\right|^{-m}\right\}$, for some $m > 1 \ \forall k \in \mathbb{Z} \setminus \left[-\frac{N}{2}, \frac{N}{2}\right)$, and

2.
$$|\hat{\theta}(k)| > \epsilon, \forall k \in \left[-\frac{N}{2}, \frac{N}{2}\right]$$

for some $\epsilon \in \mathbb{R}^+$ (not too small!). We can then set

• Set
$$\hat{c}_{\omega} := \begin{cases} \frac{\hat{f}(\omega)}{\hat{\theta}(\omega)} & \text{if } \omega \in \left[-\frac{N}{2}, \frac{N}{2}\right) \\ 0 & \text{otherwise} \end{cases}$$

- Choose $\alpha > 1$ such that $\alpha N \in \mathbb{N}$ is even.
- Compute $c_l := \frac{1}{\alpha N} \sum_{\omega = -\frac{\alpha N}{2}}^{\frac{\alpha N}{2} 1} \hat{c}_{\omega} e^{\frac{2\pi i l \omega}{\alpha N}}, l \in [\alpha N]$. We have $\sum_l |c_l| \leq \frac{\|\hat{f}\|_1}{\alpha N \epsilon}$
- Computing $c_l, \forall l \in [\alpha N]$ takes $O(\alpha N \cdot \log(\alpha N))$ time using the FFT. We have that

$$f(x) = \sum_{\omega = -\frac{\alpha N}{2}}^{\frac{\alpha N}{2} - 1} \frac{\hat{f}(\omega)}{\hat{\theta}(\omega)} \hat{\theta}(\omega) e^{2\pi i \omega x} \qquad \left(\text{ set } \hat{f}(\omega) = 0 \text{ for } \omega \notin \left[-\frac{N}{2}, \frac{N}{2} \right] \right)$$

$$= \sum_{\omega} \frac{\hat{f}(\omega)}{\hat{\theta}(\omega)} \left[\sum_{p = -\frac{\alpha N}{2}}^{\frac{\alpha N}{2} - 1} \hat{\theta}(p) e^{2\pi i p x} \left(\frac{1}{\alpha N} \sum_{l=0}^{\alpha N - 1} e^{\frac{2\pi i l(\omega - p)}{\alpha N}} \right) \right] \qquad \left(\frac{1}{\alpha N} \sum_{l=0}^{\alpha N - 1} e^{\frac{2\pi i l(\omega - p)}{\alpha N}} = \delta(\omega - p) \right)$$

$$= \frac{1}{\alpha N} \sum_{\omega} \frac{\hat{f}(\omega)}{\hat{\theta}(\omega)} \left[\sum_{l} \sum_{p} \hat{\theta}(p) e^{2\pi i p \left(x - \frac{l}{\alpha N}\right)} e^{\frac{2\pi i l \omega}{\alpha N}} \right]$$

$$= \frac{1}{\alpha N} \sum_{\omega} \frac{\hat{f}(\omega)}{\hat{\theta}(\omega)} \sum_{l} e^{\frac{2\pi i l \omega}{\alpha N}} \left[\theta \left(x - \frac{l}{\alpha N} \right) + O\left(\epsilon \cdot \int_{\frac{\alpha N}{2}}^{\infty} \left(k - \frac{N}{2} \right)^{-m} dk \right) \right]$$

$$= \sum_{l=0}^{\alpha N-1} \frac{1}{\alpha N} \left(\sum_{\omega} \frac{\hat{f}(\omega)}{\hat{\theta}(\omega)} e^{\frac{2\pi i l \omega}{\alpha N}} \right) \left[\theta \left(x - \frac{l}{\alpha N} \right) + O\left(\frac{\epsilon}{m-1} \left(\frac{(\alpha - 1)N}{2} \right)^{1-m} \right) \right]$$

$$= \sum_{l=0}^{\alpha N-1} c_l \left[\theta \left(x - \frac{l}{\alpha N} \right) + O\left(\frac{\epsilon}{m-1} \left(\frac{(\alpha - 1)N}{2} \right)^{1-m} \right) \right]$$

$$= \sum_{l=0}^{\alpha N-1} c_l \cdot \theta \left(x - \frac{l}{\alpha N} \right) + O\left(\frac{\|\hat{f}\|_1}{\alpha N(m-1)} \left(\frac{(\alpha - 1)N}{2} \right)^{1-m} \right)$$

$$(1)$$

This expression is **useful** if θ is a nice function that

- i. has m large (s.t. it decays nicely in Fourier), and
- ii. also has $\theta(x)$ decay very quickly away from 0.
- One good choice is to take

$$\theta(\nu) := (\Pi b)^{-1/2} \sum_{r \in \mathbb{Z}} e^{-(\alpha N(\nu+r))^2/b}, \text{ for } b \in \mathbb{R}^+$$

and then we approximate $\theta(\nu)$ with

$$\psi(\nu) := (\Pi b)^{-1/2} \sum_{r \in \mathbb{Z}} e^{-(\alpha N(\nu + r))^2/b} \mathcal{X}_{[-n,n]}(\alpha N(\nu + r))$$

for $1 \le b \le \frac{2\alpha n}{(2\alpha - 1)\pi}$, where $n \ll N$ is small.

• Making this choice gives an error $O\left(\|\hat{f}\|_1 e^{-b\pi^2\left(1-\frac{1}{\alpha}\right)}\right)$.

1.1.1 Wrap Up

Decide once on a function θ , and then compute $\hat{\theta}$ and ψ "once". Pick $\alpha \in \mathbb{R}^+$. Then, Given: $f(x) = \sum_{\omega} \hat{f}(\omega)e^{2\pi i\omega x}$ and $x_1 \dots x_M$.

- Compute weights $c_l = \frac{1}{\alpha N} \sum_{\omega = -\frac{\alpha N}{2}}^{\frac{\alpha N}{2} 1} \left(\frac{\hat{f}(\omega)}{\hat{\theta}(\omega)} \right) e^{\frac{2\pi i l \omega}{\alpha N}}, \forall l \in [\alpha N].$
- Set $\tilde{f}(x_j) = \sum_{l=-\log(\delta^{-1})}^{\log(\delta^{-1})} c_{\lfloor \alpha N x_j \rfloor + l} \cdot \psi\left(x_j \frac{\lfloor \alpha N x_j \rfloor + l}{\alpha N}\right), \forall j \in [M] + 1$
- Each $|f(x_j) \tilde{f}(x_j)| \le O\left(\|\hat{f}\|_1 \cdot \delta^{\pi^2(1-\frac{1}{\alpha})}\right)$
- Total runtime of 2- step procedure is $O\left(\alpha N \log(\alpha N) + N \log\left(\frac{1}{\delta}\right)\right)$

1.2 Method 2 (Another approach) [2]

- Given: $f(x) = \sum_{\omega = -\frac{N}{2}}^{\frac{N}{2}-1} \hat{f}(\omega) e^{2\pi i \omega x}$, we again want to compute f at $x_1 \dots x_M \in [0,1)$.
- Choose $M = 2^q \ge \frac{\pi N}{2}$ (power of 2 for FFT efficiency).
- Let $y_j = \frac{j}{M}$ for $j \in [M]$.
- Note that $f^{(1)}(x) = \sum_{\omega} \hat{f}(\omega)(2\pi i\omega)e^{2\pi i\omega x}$ $f^{(2)}(x) = \sum_{\omega} \hat{f}(\omega)(2\pi i\omega)^2 e^{2\pi i\omega x}$ \vdots $f^{(l)}(x) = \sum_{\omega} \hat{f}(\omega)(2\pi i\omega)^l e^{2\pi i\omega x}$
- Compute $f^{(l)}(y_j)$ for all $l \in [p], j \in [M]$ in $O(lN \log N)$ time via l FFTs.
- Taylor's Theorem tells us that $f(x_j) = \sum_{l=0}^{p-1} f^{(l)}(\tilde{y}_j) \frac{(x_j \tilde{y}_j)^l}{l!} + \frac{f^{(p)}(\xi)}{p!} (x_j \tilde{y}_j)^p$ where \tilde{y}_j is the point y_j closest to x_j , and ξ lies between x_j and \tilde{y}_j .
- Note that, the error term is $\frac{\|\hat{f}\|_1 \left(\frac{N}{2}\right)^p (2\pi)^p \left(\frac{1}{\pi N}\right)^p}{p!} \leq \frac{\|\hat{f}\|_1}{p!}$ $\implies p = O(\log N)$ suffices for decent accuracy most days. Therefore, $O(N\log^2 N)$ time gives "decent accuracy".

If the frequencies, ω , are not integers – but we want to evaluate the sums at equally spaced points – we can use essentially the same techniques to compute the sums rapidly.

References

- [1] Daniel Potts, Gabriele Steidl, Manfred Tasche. Fast Fourier transforms for nonequispaced data: A tutorial. *Modern sampling theory. Birkhuser Boston*, 2001.
- [2] Chris Anderson, Marie Dillon Dahleh. Rapid computation of the discrete Fourier transform. SIAM Journal on Scientific Computing 17.4, 1996.