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1 Overview

In the last lecture an outline and motivation for the course was given. In this lecture we review
Singular Value Decomposition (SVD) and its perturbation bounds. Additionally, we introduce the
Semi-definite Programming (SDP) and the topic of Convexity.

2 Singular Value Decomposition (SVD)

Theorem 1. Let A ∈ Cm×N . Then A has a “unique” SVD:

A = UΣV∗ (1)

where

i) U ∈ Cm×m is unitary, i.e. U−1 = U∗

ii) V ∈ CN×N is unitary
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iii) Σ ∈ Rm×N is diagonal, i.e.

Σ =


σ1 0 · · · 0
0 σ2 · · · 0
...

...
. . .

...
0 0 · · · σq


where σ1 ≥ σ2 ≥ · · · ≥ σq and q = min(m,N).

The “unique” diagonal entries σ1, σ2, · · · , σq are called the singular values of A.

Proof: The proof follows from the next 2 lemmas.

Before presenting the 2 lemmas, we begin by some definitions.

Definition 1. Let {w1, · · · ,wN} be an orthonormal basis for CN . Define sj = ||Awj ||, and

hj =

{
0 if sj = 0

1
sj

Awj ∈ Cm if sj 6= 0

and define W to be the unitary matrix (w1 · · ·wN ) ∈ CN×N .

Lemma 1.

A = (h1 · · ·hN )

 s1 · · · 0
...

. . .
...

0 · · · sN

W∗

Proof:

AW =

 s1 · · · 0
...

. . .
...

0 · · · sN

 (h1 · · ·hN )

and W−1 = W∗.

Lemma 2. Let A ∈ Cm×N . Let w1, · · · ,wN be the eigenvectors of A∗A (which is a Hermitian).
Then 〈hj ,hl〉 = 0 if j 6= l.

Proof:

〈Awj ,Awl〉 = (Awj)
∗Awl

= w∗
jA

∗Awl

= w∗
j (λlwl)

= 0 if j 6= l.
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2.1 Calculation of the SVD

Notice that

A∗A = (UΣV∗)∗(UΣV∗)

= VΣ∗U∗UΣV∗

= VΣ2V∗.

Then, V contains the eigenvectors of A∗A as columns, and σ1, σ2, · · · , σq are the squared eigenval-
ues of A∗A.

Numerically, we can use, e.g., the QR algorithm to find the eigenvalues of A∗A to get the singular
values of A. The shifted inverse power method, e.g., can be used to calculate V. Similarly, from
AA∗ we can find U.

3 Perturbation Bounds

Theorem 2. Weyl’s Bounds
Let A,E ∈ Cm×N and q = min(m,N). Then the following inequalities hold (Notice that the singular
values are assumed to be ordered)

a) σj+i−1(A + E) ≤ σi(A) + σj(E)

b) σj+i−1(AE∗) ≤ σi(A)σj(E)

for 1 ≤ i, j ≤ q such that i+ j ≤ q + 1.

Proof: For a proof, see [HJ94].

There are perturbation results for the singular vectors as well. (See Stewart’s notes.)

3.1 Homework Problems

Problem 1 Choose scribe dates.

Problem 2 Prove using Theorem 2 that

|σi(A + E)− σi(A)| ≤ σ1(E).

Problem 3 Suppose every entry of A ∈ Cm×N is corrupted with an additive error of magnitude≤ ε.
How much is σ1(A) changed in terms of ε?

4 Semi-definite Programming (SDP)

Standard Form (See [VB’96].)
Given c ∈ Rm and F0, . . . ,Fm ∈ SN that are fixed. (Note: SN is the space of real symmetric N×N
matrices.)
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And given variables x ∈ Rm. Minimize cTx such that

F(x) = F0 +
m∑
j=1

xjFj ≥ 0

which means the matrix F(x) is positive semi-definite.

Notes

• F(x) ∈ SN and so F(x) has N eigenvalues (with possible repetitions).

• F(x) ≥ 0 tells us that we want all the N eigenvalues to remain non-negative (within machine
precision).

• yTF(x)y ≥ 0 ∀y ∈ RN .

• SDPs can be solved computationally in polynomial time in mN . (See “Interior Point Meth-
ods”.)

• SDPs are a subset of the more general convex optimization problems.

5 Convexity

(See [BV04] and Appendix B of [FR13]).

5.1 Definitions

Definition 2. A function f : RD → Rd is convex if

f(αx + βy) ≤(∗) αf(x) + βf(y)

∀x,y ∈ RD and ∀α, β ∈ (0, 1) such that α+ β = 1.

(∗) The inequality is coordinate-wise.

• f(x) = cTx is convex since it is linear.

Definition 3. A function F : Rm → RN×N is convex if

F(αx + βy) ≤(∗) αF(x) + βF(y)

∀x,y ∈ Rm and ∀α, β ∈ R+ such that α+ β = 1.

(∗) For matrices, A ≤ B if B−A is positive semi-definite.

• F(x) = F0 +
∑m

j=1 xjFj is convex since it is linear.
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Definition 4. A set K ⊆ Rm is convex if

(αx + (1− α)y) ∈ K

∀x,y ∈ K and ∀α ∈ (0, 1).

• The set K = {x|F(x) ≥ 0} used in the SDP constraint is a convex set.

Definition 5. K ⊆ Rm is a convex cone if it is both convex and a cone.

Definition 6. K ⊆ Rm is a cone if αx ∈ K, ∀x ∈ K and ∀α ∈ R+.

5.2 Homework Problems

Problem 4 Show that K = {x|F(x) = F0 +
∑m

j=1 xjFj} (used in the SDP constraint) is convex.
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