Lecture 29 - 15 April, 2014
Inst. Mark Iwen
Scribe: Oleksii Karpenko

1 Overview

In this lecture, we present the algorithm for fast support identification. We want to design measurements that allow us to quickly find an $S \subset[N]$ such that $S_{0}(k) \subset S$ for $\vec{x} \in \mathbb{C}^{N}$.

2 Notational review

Let $A \in\{0,1\}^{m \times N}$ and B_{N} be the $N^{t h}$ bit testing matrix. Let $\left\{\vec{b}_{0}, \vec{b}_{1}, \ldots, \vec{b}_{\left[\log _{2} N\right\rceil}\right\} \in\{0,1\}^{N}$ be the rows of B_{N}. Given $\left(A \otimes B_{N}\right) \vec{x}$ we also get $\left(A \otimes \vec{b}_{i}\right) \vec{x} \in \mathbb{C}^{m}, \forall i=0 \ldots\left\lceil\log _{2} N\right\rceil$. This means that we get $A \vec{x}$ as well as $\left(A(K, n) \otimes \vec{b}_{i}\right) \vec{x}, \forall n \in[N]$ and $\forall i=0 \ldots\left\lceil\log _{2} N\right\rceil$.
Note that $\left(A(K, n) \otimes \vec{b}_{i}\right) \in\{0,1\}^{K \times N}$ is exactly the matrix $A(K, n)$ with its $l^{\text {th }}$-column set to zero-vector if and only if $l \in[N]$ has a zero in its $i^{\text {th }}$ bit when written in binary.

Example 1.

$$
\left(\begin{array}{llll}
1 & 1 & 1 & 1 \\
2 & 2 & 2 & 2
\end{array}\right) \otimes\left(\begin{array}{llll}
1 & 0 & 1 & 0
\end{array}\right)=\left(\begin{array}{llll}
1 & 0 & 1 & 0 \\
2 & 0 & 2 & 0
\end{array}\right)
$$

Let $n \in[N]$ and assume that matrix A is (K, α)-coherent with $K>\frac{4 \tilde{k} \alpha}{\varepsilon}$, where $\varepsilon \in(0,1)$ for sparsity \tilde{k}. Theorem 1 (Lecture 27) tells us that more than $1 / 2$ of the $j \in[K]$ satisfy $(A(K, n) \vec{x})_{j} \in B\left(x_{n}, \delta\right)$, where

$$
\begin{equation*}
\delta:=\frac{\varepsilon}{\tilde{k}} \left\lvert\,\left\|\vec{x}-\vec{x}_{S_{0}\left(\frac{\tilde{k}}{\varepsilon}\right)}\right\|_{1} \quad \tilde{k} \in[N]\right., \forall \varepsilon \in(0,1) \tag{1}
\end{equation*}
$$

Definition 1. Given $\vec{x} \in \mathbb{C}^{\mathbb{N}}$, let $|\vec{x}| \in \mathbb{R}^{\mathbb{N}}$ be such that $|\vec{x}|_{j}:=\left|\vec{x}_{j}\right|, \forall j \in[N]$.
Note that δ is the same for both \vec{x} and $|\vec{x}|$.

Now let's let $\vec{a}_{j}^{\prime} \in\{0,1\}^{N}$ be the $j^{\text {th }}$ row of $A(K, n)$ and suppose that
(i) $\quad\left\langle\vec{a}_{j}^{\prime},\right| \vec{x}\left\rangle \in B\left(\left|x_{n}\right|, \delta\right)\right.$, and
(ii) $\left|x_{n}\right|>\delta$.

From Theorem 1 (Lecture 27) we know that more than $1 / 2$ of the rows, \vec{a}_{j}^{\prime}, of $A(K, n)$ will satisfy (i). Supposing that $\left|x_{n}\right|>\delta$ and that the $i^{\text {th }}$ bit of n in binary is 1 :

$$
\begin{array}{r}
\left|\left\langle\vec{a}_{j}^{\prime} \otimes \vec{b}_{i}, \vec{x}\right\rangle\right| \geq\left|x_{n}\right|-\sum_{\substack{l \in \text { supp }\left(\vec{a}_{j}^{\prime}\right) \text { s.t. } l \neq n ; \\
i^{\text {th }} \text { bit of } l=1}}\left|x_{l}\right| \\
\geq \delta-\sum_{\begin{array}{l}
l \in \text { supp }\left(\vec{a}_{j}^{\prime}\right) \text { s.t. } l \neq n ; \\
i^{\text {th }} \text { bit of } l=1
\end{array}}\left|x_{l}\right| \\
\quad \geq \sum_{\substack{l \in \text { supp }\left(\vec{a}_{j}^{\prime}\right) \text { s.t. } l \neq n ; \\
i^{\text {th }} \text { bit of } l=0}}\left|x_{l}\right| \\
 \tag{2}\\
\geq\left|\left\langle\vec{a}_{j}^{\prime}-\vec{a}_{j}^{\prime} \otimes \vec{b}_{i}, \vec{x}\right\rangle\right|
\end{array}
$$

Essentially the same argument shows that $\left|\left\langle\vec{a}_{j}^{\prime}-\vec{a}_{j}^{\prime} \otimes \vec{b}_{i}, \vec{x}\right\rangle\right|>\left|\left\langle\vec{a}_{j}^{\prime} \otimes \vec{b}_{i}\right\rangle, \vec{x}\right|$, whenever the $i^{\text {th }}$ bit of n is zero. We have now shown that the algorithm below will identify all $n \in[N]$ with $\left|x_{n}\right|>\delta$ more than $K / 2$ times apeice.

Algortihm 1.

1. $S=\emptyset$
2. For $j \in[m]$
3. \quad For $i=0 \ldots\left\lceil\log _{2} N\right\rceil-1$
4. If $\left|\left\langle\vec{a}_{j}^{\prime} \otimes \vec{b}_{i}, \vec{x}\right\rangle\right|>\left|\left\langle\vec{a}_{j}^{\prime}-\vec{a}_{j}^{\prime} \otimes \vec{b}_{i}, \vec{x}\right\rangle\right|$

Set $n_{i}=1$
5. Else

Set $n_{i}=0$

6. End For

7. Set $n=\sum_{i=0}^{\left\lceil\log _{2} N\right\rceil-1} n_{i} \cdot 2^{i}$ (translate from binary to decimal);
8. $S=S \cup\{n\}$

9. End For

It takes $O(m \log N)$ operations to go through steps 1 to 9 . Also, we know that, e.g., $m=K^{2}$ is possible (from Lecture 26). Therefore, the total runtime of Algorithm 1 is generally sublinear in N. For example,

$$
\begin{equation*}
m=O\left(\frac{\tilde{k}^{2} \log ^{3} N}{\varepsilon^{2}}\right) \ll N \tag{3}
\end{equation*}
$$

works.

Measurements m can be randomized/reduced to get the total runtime of $O\left(\tilde{k} \log \left(\frac{N}{1-p}\right) \log \tilde{k}\right)$, which has the same accuracy as the deterministic variant with probability at least p.

It is true that $|S| \leq m$, but we also know that every $n \in[N]$ such that $\left|x_{n}\right|>\delta$ is recovered at least $K / 2$ times. Therefore, $|S|=O(K)$, and we expect $S \supset S_{0}\left(\frac{2 \tilde{k}}{\varepsilon}\right)$, which follows from the Lemma below.

Lemma 1. Suppose that $\left|x_{n}\right|>\delta$. Then, $n \in S_{0}\left(\frac{2 \tilde{k}}{\varepsilon}\right)$. As a result, Algorithm 1 finds all $n \in$ $S_{0}\left(\frac{2 \tilde{k}}{\varepsilon}\right)$ with $\left|x_{n}\right|>\delta$.

Note that $n \in S_{0}\left(\frac{2 \tilde{k}}{\varepsilon}\right)$ with $\left|x_{n}\right| \leq \delta$ are "OK to miss".
Next time we will use results from Lectures 28 and 29 to help construct Sparse Fast Fourier Transforms (SFFTs).

