MTH 995-003: Intro to CS and Big Data

Spring 2014

Lecture 29 — 15 April, 2014

Inst. Mark Iwen

Scribe: Oleksii Karpenko

1 Overview

In this lecture, we present the algorithm for fast support identification. We want to design measurements that allow us to quickly find an $S \subset [N]$ such that $S_0(k) \subset S$ for $\vec{x} \in \mathbb{C}^N$.

2 Notational review

Let $A \in \{0,1\}^{m \times N}$ and B_N be the N^{th} bit testing matrix. Let $\{\vec{b}_0, \vec{b}_1, \dots, \vec{b}_{\lceil \log_2 N \rceil}\} \in \{0,1\}^N$ be the rows of B_N . Given $(A \otimes B_N)\vec{x}$ we also get $(A \otimes \vec{b}_i)\vec{x} \in \mathbb{C}^m$, $\forall i = 0 \dots \lceil \log_2 N \rceil$. This means that we get $A\vec{x}$ as well as $(A(K, n) \otimes \vec{b}_i)\vec{x}, \forall n \in [N]$ and $\forall i = 0 \dots \lceil \log_2 N \rceil$.

Note that $(A(K,n) \otimes \vec{b}_i) \in \{0,1\}^{K \times N}$ is exactly the matrix A(K,n) with its l^{th} -column set to zero-vector if and only if $l \in [N]$ has a zero in its i^{th} bit when written in binary.

Example 1.

$$\left(\begin{array}{rrrr} 1 & 1 & 1 & 1 \\ 2 & 2 & 2 & 2 \end{array}\right) \otimes \left(\begin{array}{rrrr} 1 & 0 & 1 & 0 \end{array}\right) = \left(\begin{array}{rrrr} 1 & 0 & 1 & 0 \\ 2 & 0 & 2 & 0 \end{array}\right)$$

Let $n \in [N]$ and assume that matrix A is (K, α) -coherent with $K > \frac{4\tilde{k}\alpha}{\varepsilon}$, where $\varepsilon \in (0, 1)$ for sparsity \tilde{k} . Theorem 1 (Lecture 27) tells us that more than 1/2 of the $j \in [K]$ satisfy $(A(K, n)\vec{x})_j \in B(x_n, \delta)$, where

$$\delta := \frac{\varepsilon}{\tilde{k}} \left\| \vec{x} - \vec{x}_{S_0\left(\frac{\tilde{k}}{\varepsilon}\right)} \right\|_1 \qquad \tilde{k} \in [N], \forall \varepsilon \in (0, 1)$$

$$\tag{1}$$

Definition 1. Given $\vec{x} \in \mathbb{C}^{\mathbb{N}}$, let $|\vec{x}| \in \mathbb{R}^{\mathbb{N}}$ be such that $|\vec{x}|_j := |\vec{x}_j|, \forall j \in [N]$.

Note that δ is the same for both \vec{x} and $|\vec{x}|$.

Now let's let $\vec{a}_j' \in \{0,1\}^N$ be the j^{th} row of A(K,n) and suppose that

(i)
$$\langle \vec{a}'_j, |\vec{x}| \rangle \in B(|x_n|, \delta)$$
, and

(ii)
$$|x_n| > \delta$$
.

From Theorem 1 (Lecture 27) we know that more than 1/2 of the rows, \vec{a}'_j , of A(K, n) will satisfy (i). Supposing that $|x_n| > \delta$ and that the i^{th} bit of n in binary is 1:

$$\begin{split} \left\langle \vec{a}_{j}^{\prime} \otimes \vec{b}_{i}, \vec{x} \right\rangle \Big| &\geq |x_{n}| - \sum_{\substack{l \in supp(\vec{a}_{j}^{\prime}) \ s.t. \ l \neq n; \\ i^{th} \ bit \ of \ l=1}} |x_{l}| \\ &\geq \delta - \sum_{\substack{l \in supp(\vec{a}_{j}^{\prime}) \ s.t. \ l \neq n; \\ i^{th} \ bit \ of \ l=1}} |x_{l}| \\ &\geq \sum_{\substack{l \in supp(\vec{a}_{j}^{\prime}) \ s.t. \ l \neq n; \\ i^{th} \ bit \ of \ l=0}} |x_{l}| \\ &\geq \left| \left\langle \vec{a}_{j}^{\prime} - \vec{a}_{j}^{\prime} \otimes \vec{b}_{i}, \vec{x} \right\rangle \right| \end{split}$$
(2)

Essentially the same argument shows that $\left|\langle \vec{a}'_j - \vec{a}'_j \otimes \vec{b}_i, \vec{x} \rangle\right| > \left|\langle \vec{a}'_j \otimes \vec{b}_i \rangle, \vec{x}\right|$, whenever the i^{th} bit of n is zero. We have now shown that the algorithm below will identify all $n \in [N]$ with $|x_n| > \delta$ more than K/2 times appice.

- 1. $S = \emptyset$
- 2. For $j \in [m]$
- 3. **For** $i = 0 \dots \lceil \log_2 N \rceil 1$
- 4. If $\left| \langle \vec{a}'_j \otimes \vec{b}_i, \vec{x} \rangle \right| > \left| \langle \vec{a}'_j \vec{a}'_j \otimes \vec{b}_i, \vec{x} \rangle \right|$ Set $n_i = 1$
- 5. Else Set $n_i = 0$
- 6. End For
- 7. Set $n = \sum_{i=0}^{\lceil \log_2 N \rceil 1} n_i \cdot 2^i$ (translate from binary to decimal);

8.
$$S = S \cup \{n\}$$

9. End For

It takes $O(m \log N)$ operations to go through steps 1 to 9. Also, we know that, e.g., $m = K^2$ is possible (from Lecture 26). Therefore, the total runtime of Algorithm 1 is generally sublinear in N. For example,

$$m = O\left(\frac{\tilde{k}^2 \log^3 N}{\varepsilon^2}\right) \ll N \tag{3}$$

works.

Measurements m can be randomized/reduced to get the total runtime of $O\left(\tilde{k}\log\left(\frac{N}{1-p}\right)\log\tilde{k}\right)$, which has the same accuracy as the deterministic variant with probability at least p.

It is true that $|S| \leq m$, but we also know that every $n \in [N]$ such that $|x_n| > \delta$ is recovered at least K/2 times. Therefore, |S| = O(K), and we expect $S \supset S_0\left(\frac{2\tilde{k}}{\varepsilon}\right)$, which follows from the Lemma below.

Lemma 1. Suppose that $|x_n| > \delta$. Then, $n \in S_0\left(\frac{2\tilde{k}}{\varepsilon}\right)$. As a result, Algorithm 1 finds all $n \in S_0\left(\frac{2\tilde{k}}{\varepsilon}\right)$ with $|x_n| > \delta$.

Note that $n \in S_0\left(\frac{2\tilde{k}}{\varepsilon}\right)$ with $|x_n| \leq \delta$ are "OK to miss".

Next time we will use results from Lectures 28 and 29 to help construct Sparse Fast Fourier Transforms (SFFTs).