Lecture 28 - April 10, 2014
Inst. Mark Iwen
Scribe: Chinh Dang

## 1 Review

From lectures 26 and 27 we know that $\exists A \in\{0,1\}^{O\left(k^{2} \log _{k}^{2} N / \varepsilon^{2}\right) \times N}$ that is $\left(K:=\frac{4 k\left[\log _{k} N\right]}{\varepsilon},\left\lfloor\log _{k} N\right\rfloor\right)$ coherent, and has $(A(K, n) \vec{x})_{j} \in B\left(x_{n}, \frac{\varepsilon\left\|\vec{x}-\vec{x}_{S_{0}(k / \epsilon)}\right\|_{1}}{k}\right)$ for more than half of $j \in[K] \forall n \in \mathbb{N}$, and $\vec{x} \in \mathbb{C}^{N}$.

For the remainder of this lecture,

- $A$ is the matrix above. It is entirely deterministic, and easy to store (or encode in hardware).
- $A(K, n)$ is a submatrix of $A$ for all $n$. So, if we know $A \vec{x}$, we also know $(A(K, n) \vec{x}) \forall n \in \mathbb{N}$
- The rows in $A(K, n)$ can be found quickly "on the fly" in $O\left(K \cdot \log _{k} N\right)$-time


## 2 Main Lecture

We will consider the following reconstruction algorithm for approximating $\vec{x}$ given $A \vec{x}$, and a subset $S \subseteq[N]$.

## Algorithm 1.

Input: $A \vec{x}$, and $S \subseteq[N]$

1. For each $n \in S$
2. Let $\boldsymbol{\operatorname { R e }}\left[z_{n}\right]$ be the median of the entries $\boldsymbol{\operatorname { R e }}\{A(K, n) \vec{x}\}$

Let $\operatorname{Im}\left[z_{n}\right]$ be the median of the entries $\operatorname{Im}\{A(K, n) \vec{x}\}$
3. End for
4. Sort $\vec{z}_{S}$ by the magnitude of its entries $\left|z_{n_{1}}\right| \geq\left|z_{n_{2}}\right| \geq \ldots$
5. Output $\vec{z}_{\widetilde{S}}$ for $\widetilde{S}=\left\{n_{1}, \ldots, n_{2 k}\right\}$

## Running time of Algorithm 1:

Lines 1- 3: $O(|S| K \log N)$
Line 4: $O(|S| \log |S|)$
Hence, the total runtime becomes $O\left(|S| \frac{K \log ^{2} N}{\varepsilon^{2}}\right)$. In case $S=[N]$, it will run in $O\left(N \frac{K \log ^{2} N}{\varepsilon^{2}}\right)$ time.

Theorem 1. Let $\vec{x} \in \mathbb{C}^{N}$ and $A \in\{0,1\}^{m \times N}$ be as above. Let $S_{0}(k) \subset[N]$ be the $\lfloor k\rfloor$-largest magnitude entries of $\vec{x} \in \mathbb{C}^{N}$ for any $k \in(1, N)$. Suppose that the $S$ passed into Algorithm 1 has $S_{0}(k) \subset S,|S| \geq 2 k$, then the output of Algorithm 1, $z_{\widetilde{S}} \in \mathbb{C}^{N}$ satisfies:

$$
\begin{equation*}
\left\|\vec{x}-\vec{z}_{\widetilde{S}}\right\|_{2} \leq\left\|\vec{x}-\vec{x}_{S_{0}(k)}\right\|_{2}+\frac{22 \varepsilon\left\|\vec{x}-\vec{x}_{S_{0}(k / \varepsilon)}\right\|_{1}}{\sqrt{k}} \tag{*}
\end{equation*}
$$

Proof: Let $\delta=\frac{\varepsilon\left\|x-x_{S_{0}(k / \varepsilon)}\right\|_{1}}{k}$. Theorem 1 from lecture 27 implies $\left|\vec{z}_{n}-\vec{x}_{n}\right| \leq \sqrt{2} \delta \forall n \in S$ Thus:

$$
\left\|\vec{x}-\vec{z}_{\widetilde{S}}\right\|_{2} \leq\left\|\vec{x}-\vec{x}_{\widetilde{S}}\right\|_{2}+\left\|\vec{x}_{\widetilde{S}}-\vec{z}_{\widetilde{S}}\right\|_{2} \leq\left\|\vec{x}-\vec{x}_{\widetilde{S}}\right\|_{2}+2 \sqrt{k} \delta
$$

Since

$$
\left\|\vec{x}-\vec{x}_{\widetilde{S}}\right\|_{2}=\sqrt{\left\|\vec{x}-\vec{x}_{S_{0}(k)}\right\|_{2}^{2}+\sum_{n \in S_{0}(k) \backslash \widetilde{S}}\left|\vec{x}_{n}\right|^{2}-\sum_{n \in \widetilde{S} \backslash S_{0}(k)}\left|\vec{x}_{n}\right|^{2}}
$$

we need $\sum_{n \in S_{0}(k) \backslash \widetilde{S}}\left|x_{n}\right|^{2}-\sum_{n \in \widetilde{S} \backslash S_{0}(k)}\left|x_{n}\right|^{2} \leq(20 \sqrt{k} \delta)^{2}$ in order to get (*). Let

$$
\nu:=\sum_{n \in S_{0}(k) \backslash \widetilde{S}}\left|x_{n}\right|^{2}-\sum_{n \in \widetilde{S} \backslash S_{0}(k)}\left|x_{n}\right|^{2} .
$$

There are 3 cases to consider:

- Case 1. $S_{0}(k) \backslash \widetilde{S}=\emptyset$. It implies that $\nu \leq 0<(20 \sqrt{k} \delta)^{2}$
- Cases 2 and 3. Suppose $j_{l} \in S_{0}(k) \backslash \widetilde{S}$. Since $S_{0}(k) \subset S$, this only happens if line 4 of Algorithm 1 found $\left|z_{n}\right| \geq\left|z_{j_{l}}\right|$ for all $n \in \widetilde{S} \backslash S_{0}(k)$.
However, $\left|z_{n}\right| \geq\left|z_{j l}\right|$ implies that

$$
\left|x_{j_{k}}\right|+\sqrt{2} \delta \geq\left|x_{n}\right|+\sqrt{2} \delta \geq\left|z_{n}\right| \geq\left|z_{j_{l}}\right| \geq\left|x_{j_{l}}\right|-\sqrt{2} \delta \geq\left|x_{j_{k}}\right|-\sqrt{2} \delta
$$

Thus,

$$
\begin{aligned}
\sum_{n \in \widetilde{S} \backslash S_{0}(k)}\left|x_{n}\right|^{2} & \geq\left|\widetilde{S} \backslash S_{0}(k)\right|\left(\left|x_{j_{k}}\right|-2 \sqrt{2} \delta\right)^{2} \\
& \geq A:=2\left|S_{0}(k) \backslash \widetilde{S}\right|\left(\left|x_{j_{k}}\right|-2 \sqrt{2} \delta\right)^{2}
\end{aligned}
$$

On the other hand, $B:=\left|S_{0}(k) \backslash \widetilde{S}\right|\left(\left|x_{j_{k}}\right|+2 \sqrt{2 \delta}\right)^{2} \geq \sum_{n \in S_{0}(k) \backslash \widetilde{S}}\left|x_{n}\right|^{2}$.
Case 2: if $A \geq B$, we got the result.
Case 3: if $B>A$, we have:

$$
\begin{gathered}
\left|x_{j k}\right|^{2}-12 \sqrt{2} \delta\left|x_{j k}\right|+8 \delta^{2}<0 \\
\Rightarrow\left|x_{j k}\right| \leq(8+6 \sqrt{2}) \delta \leq(20 \delta)^{2}
\end{gathered}
$$

Thus, we have our result.

Note: If we can quickly find an $S$ with $S_{0}(k) \subset S$, then theorem 1 implies that Algorithm 1 will quickly produce a good approximation to $\vec{x}$. In the next lecture, we will focus on how to find such an $S \subset[N]$ quickly. This will be done with "bit testing matrices".

Definition 1. The $N^{\text {th }}$ bit testing matrix is $B_{N} \in\{0,1\}^{\left(1+\left[\log _{2} N\right\rceil\right) \times N}$ where:

$$
\left(B_{N}\right)_{i j}=\left\{\begin{array}{lc}
1 & \text { if } i=0 \\
(i-1)^{\mathrm{th}} & \text { bit in the binary expansion of } j \\
\text { if } i>0
\end{array} .\right.
$$

Example 1. $B_{4} \in\{0,1\}^{3 \times 4}$, we have

$$
B_{4}=\left(\begin{array}{llll}
1 & 1 & 1 & 1 \\
0 & 1 & 0 & 1 \\
0 & 0 & 1 & 1
\end{array}\right)
$$

We will also need "row tensor products" of matrices.
Definition 2. Let $A \in \mathbb{R}^{m \times N}, C \in \mathbb{R}^{\tilde{m} \times N}$. Their row tensor product is $A \otimes C \in \mathbb{R}^{(m \cdot \tilde{m}) \times N}$ with

$$
(A \otimes C)_{i j}=A_{i \bmod m, j} \frac{C_{i-(i \bmod m)}^{m}, j}{} .
$$

Example 2. Let $A=\left(\begin{array}{cccc}1 & 2 & 3 & 4 \\ -1 & 1 & 1 & 1\end{array}\right)$, and let the matrix $B_{4}$ be as above. Then, their row tensor product is

$$
A \otimes B_{4}=\left(\begin{array}{cccc}
1 & 2 & 3 & 4 \\
-1 & 1 & 1 & 1 \\
0 & 2 & 0 & 4 \\
0 & 1 & 0 & 1 \\
0 & 0 & 3 & 4 \\
0 & 0 & 1 & 1
\end{array}\right)
$$

## References

[1] Iwen, M. A. Compressed sensing with sparse binary matrices: Instance optimal error guarantees in near-optimal time. Journal of Complexity (2013).
[2] Cormode, Graham, and S. Muthukrishnan. Combinatorial algorithms for compressed sensing. In Structural Information and Communication Complexity, pp. 280-294. Springer Berlin Heidelberg, 2006.
[3] Gilbert, Anna C., Martin J. Strauss, Joel A. Tropp, and Roman Vershynin. One sketch for all: fast algorithms for compressed sensing. In Proceedings of the thirty-ninth annual ACM symposium on Theory of computing, pp. 237-246. ACM, 2007.
[4] Gilbert, Anna C., Yi Li, Ely Porat, and Martin J. Strauss. Approximate sparse recovery: optimizing time and measurements. SIAM Journal on Computing 41, no. 2 (2012): 436-453.
[5] Bailey, J., Mark A. Iwen, and Craig V. Spencer. On the design of deterministic matrices for fast recovery of fourier compressible functions.SIAM Journal on Matrix Analysis and Applications 33, no. 1 (2012): 263-289.

