Lecture 27 - April 08, 2014
Inst. Mark Iwen
Scribe: Ashwini Maurya

1 Combinatorial Properties of (k, α) Coherent Matrices

Let $A \in\{0,1\}^{m \times N}$ be a (k, α) coherent.
Definition 1. $A(K, n) \in\{0,1\}^{K \times N}$ for a chosen $n \in[N]$ is the $K \times N$ submatrix of A created by selecting the first K rows of A with non-zero entries in $n^{\text {th }}$ column of A.
Example 1.

$$
A=\left(\begin{array}{llllllll}
1 & 1 & 0 & 0 & 0 & 0 & 1 & 0 \\
1 & 0 & 1 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 1 & 0 & 1 & 1 \\
0 & 1 & 0 & 0 & 0 & 1 & 0 & 1 \\
0 & 0 & 1 & 0 & 1 & 1 & 0 & 0
\end{array}\right)
$$

is $(2,1)$ coherent. (Note that every column has exactly two 1's and the inner-product between any two columns in 1).
Then $A(2,3) \in\{0,1\}^{2 \times 8}$, where $K=2$ and $n=3$, is

$$
A(2,3)=\left(\begin{array}{llllllll}
1 & 0 & 1 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 1 & 0 & 1 & 1
\end{array}\right)
$$

(Recall: The column index starts from 0.)
Definition 2. $A^{\prime}(K, n) \in\{0,1\}^{K \times(N-1)}$ for $n \in[N]$ is the $A(K, n)$ sub-matrix of A with it's $n^{\text {th }}$ column deleted.
Example 2. If A is as in the first example, then

$$
A^{\prime}(2,3)=\left(\begin{array}{ccccccc}
1 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 1 & 1
\end{array}\right)
$$

Lemma 1. Suppose $A \in\{0,1\}^{m \times N}$ is (K, α)-coherent. Let $n \in[N], \tilde{k} \in\left[1, \frac{K}{\alpha}\right]$ and $\vec{x} \in \mathbb{C}^{N-1}$. Then at most $\tilde{k} \alpha$ of the entries of $A^{\prime}(K, n) \vec{x} \in \mathbb{C}^{K}$ will have magnitude

$$
\geq \frac{\|\vec{x}\|_{1}}{\tilde{k}}
$$

Proof. Let

$$
B:=\left\{j| |\left(A^{\prime}(K, n) \vec{x}\right)_{j} \left\lvert\, \geq \frac{\|\vec{x}\|_{1}}{\tilde{k}}\right.\right\} .
$$

Then,

$$
|B| \leq \frac{\tilde{k}}{\|\vec{x}\|_{1}}\left\|A^{\prime}(K, n) \vec{x}\right\|_{1} \leq \tilde{k}\left\|A^{\prime}(K, n)\right\|_{1 \rightarrow 1} .
$$

Bounding the operator norm of $A^{\prime}(K, n) \vec{x}$ we get that

$$
\begin{align*}
\left\|A^{\prime}(K, n)\right\|_{1 \rightarrow 1} & =\max _{l \in[N-1]} \| l^{t h} \text { column of } A^{\prime}(K, n) \|_{1} \tag{1}\\
& \leq \max _{l \in[N]-\{n\}}\left\langle l^{t h} \text { column of } A, n^{\text {th }} \text { column of } A\right\rangle \tag{2}\\
& \leq \alpha . \tag{3}
\end{align*}
$$

The result follows.
Lemma 2. Suppose $A \in\{0,1\}^{m \times N}$ is (K, α) coherent. Let $n \in[N], \tilde{k} \in\left[1, \frac{k}{\alpha}\right]$ and $S \subset[N]$ with $|S| \leq \tilde{k}$. Let $\vec{x} \in \mathbb{C}^{N-1}$ then $A^{\prime}(K, n) \vec{x}$ and $A^{\prime}(K, n)\left(\vec{x}-\vec{x}_{S}\right)$ will differ in at most $\tilde{k} \alpha$ entries.

Proof. Let $B \subset[K]$ defined by

$$
B:=\left\{j \mid\left(A^{\prime}(K, n) \vec{x}\right)_{j} \neq\left(A^{\prime}(K, n)\left(\vec{x}-\vec{x}_{S}\right)_{j}\right\} .\right.
$$

Once can see that

$$
|B|=\left|\left\{j \mid\left(A^{\prime}(K, n) \vec{x}_{S}\right)_{j} \neq 0\right\}\right| .
$$

Let $\vec{q} \in \mathbb{C}^{N-1}$ be a vector of all $1^{\prime} s$. Note that:
$\bullet|B| \leq\left|\left\{j \mid\left(A^{\prime}(K, n) \vec{q} S\right)_{j} \geq 1\right\}\right|$. Since $A^{\prime}(K, n) \in\{0,1\}^{k \times(N-1)}$.

- Applying Lemma 1 with $\vec{x}=\vec{q}_{S},\|\vec{x}\|=|S| \leq \tilde{k}$ gives the result.

Theorem 1. Suppose A is (K, α)-coherent. Let $n \in[N], \tilde{k} \in\left[1, \frac{k}{\alpha}\right], \epsilon \in(0,1], c \in[2, \infty)$ and $\vec{x} \in \mathbb{C}^{N}$. If $K>\frac{c \tilde{k} \alpha}{\epsilon}$ then

$$
(A(K, n) \vec{x})_{j} \in B\left(x_{n}, \frac{\epsilon\left\|\vec{x}-\vec{x}_{S_{0}\left(\frac{\tilde{k}}{\epsilon}\right)}\right\|_{1}}{\tilde{k}}\right)
$$

for more than $\frac{c-2}{c} K$ values of $j \in[K]$. Here $S_{0}(\tilde{k}) \subset[N]$ for a given $\vec{x} \in \mathbb{C}^{N}$ is the set of indexes $\left\{j_{1}, j_{2}, \cdots, j_{\frac{\tilde{k}}{\alpha}}\right\}^{c}$ where $\left|x_{j_{1}}\right| \geq\left|x_{j_{2}}\right| \geq, \cdots, \geq\left|x_{j_{\frac{\tilde{k}}{\alpha}}}\right| \geq \ldots$.

Proof. Let $\vec{y} \in \mathbb{C}^{N-1}$ be \vec{x} with x_{n} removed. i.e. $\vec{y}=\left(x_{1}, x_{2}, \cdots, x_{n-1}, x_{n+1}, \cdots, x_{N-1}\right)$. Let $\overrightarrow{a_{0}}, \overrightarrow{a_{1}}, \cdots, \vec{a}_{N-1}$ be $\{0,1\}^{\tilde{K}}$ be the columns of $A(K, n)$. We have the following.

$$
A(K, n) \vec{x}=x_{n} \overrightarrow{a_{n}}+A^{\prime}(K, n) \vec{y}=x_{n} \overrightarrow{1}+A^{\prime}(K, n) \vec{y} .
$$

Applying Lemma 2, we see that at most $\tilde{k} \alpha / \epsilon$ entries of $A^{\prime}(K, n) \vec{y}$ can differ from $A^{\prime}(K, n)\left(\vec{y}-\vec{y}_{S_{0}\left(\frac{\tilde{k}}{\epsilon}\right)}\right)$. Of the remaining $K-\frac{\tilde{k} \alpha}{\epsilon}$ entries of $A^{\prime}(K, n) \vec{y}$ at most $\frac{\tilde{k} \alpha}{\epsilon}$ entries can have magnitude

$$
\geq \frac{\epsilon}{\tilde{k}}\left\|\vec{y}-\vec{y}_{S_{0}\left(\frac{\tilde{k}}{\epsilon}\right)}\right\|_{1}
$$

by Lemma 1. Hence, at least $K-2 \frac{\tilde{k} \alpha}{\epsilon}>\frac{c-2}{c} K$ entries of $A^{\prime}(K, n) \vec{y}$ will have magnitude

$$
\leq \frac{\epsilon}{\tilde{k}}\left\|\vec{y}-\vec{y}_{S_{0}\left(\frac{k}{\epsilon}\right)}\right\|_{1} \leq \frac{\epsilon}{\tilde{k}}\left\|\vec{x}-\vec{x}_{S_{0}\left(\frac{k}{\epsilon}\right)}\right\|_{1} .
$$

The result follows.

Note:

- Setting $c \geq 4$ in Theorem 1 tells us that the majority of $A(K, n) \vec{x}$ will be good (i.e., will lie within ball $B\left(x_{n}, \frac{\epsilon\left\|\vec{x}-\vec{x}_{S_{0}\left(\frac{k}{\alpha}\right)}\right\|_{1}}{\tilde{k}}\right)$.
- Recall from Example 1 of Lecture 26 that $A \in\{0,1\}^{K^{2} \times N}$ matrices that are $\left(K,\left\lfloor\frac{\log N}{\log K}\right\rfloor\right)$-coherent exist. By Theorem 1, if we let

$$
K \geq 4 \frac{\tilde{k} \log N}{\epsilon \log \tilde{k}}
$$

then more than half of the $A^{\prime}(K, n) \vec{x}$ will estimate x_{n} well $\forall n, \vec{x}$. The number of rows is

$$
m=K^{2}=O\left(\tilde{k}^{2} \frac{\log ^{2} N}{\epsilon^{2} \log ^{2} \tilde{k}}\right)
$$

