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1 Coherence

Definition 1. Let A € C™N be a matriz with fo—normalized columns (i.e. such that A =
(d1,...,dn) has ||dj]| =1 Vj € [N]). The coherence of A, u(A) is

p(A) := max |(@;, d;)|
i#]

If A is an orthogonal matrix, then, p(A) = 0. This is the best case.

If A has two identical columns, then, u(A) = 1. This is the worst case.

In general, u(A) € [0, 1]. The smaller it is, the better.
e It turns out that matrices with low coherence have the R.I.P..
e In order to prove this we need Gershgorin’s Disk Theorem.

Theorem 1 (Gershgorin’s Disk Theorem). Let A be an eigenvalue of a square matriz A € C™*™.,

Then, 3 an index j € [m] such that |X — Aj ;| <> ey 145l

Proof: Let i@ € C™ — {0} be an eigenvector for A. Let j € [m] be such that |@;| = ||il]|eo. Then,
Zle[m} A1 wp = luy such that Zle[m]_{j} A up = Auj — Aj; uj . Therefore,

M= Al lugl < D Al il

1€[m]—{j}
<lldlloo Y. 1Al (1)
1€[m]—{}
Dividing through by |u;| = ||t||« yields the desired result. O

We can now show that a matrix with small coherence will also have reasonable Restricted Isometry
Constants.



Theorem 2. Let A € C™N be a matriz with la—normalized columns. Let k € [N]. For all
k-sparse vectors & € CN,

(1= (k=Du) 215 < 14713 < 1+ (k- DuA) 17]3 ()

Note: If (1) is true then it implies that AgAg has all eigenvalues in

[1—p(A)(k—1),14 p(A)(k—1)] VS C[N]with S| <k

—If (1) is true then it also implies that the R.I.C. €4(A) < u(A)(k —1)

Proof of Theorem 2: Let S C [N] have |S| = k. Then, A5Ags € CF*¥ is positive semi-definite and
has k orthonormal eigenvectors.

o Let A\ qr = largest eigenvalue > A,,;, = smallest eigenvalue > 0.

e If # has support C S, then ||AZ|| = ||As@s|| = (ASASE, &) < Mnae||Z]3. Similarly, ||AZ| =
|AsZs| = (AL AsT, T) > Amin||Z]|3. Thus, it suffices to bound Anin, Amaa-

o Let A\pin < A < gz be an eigenvalue of A;As.

e Note that (A5As);; =1 Vj € [k]. Theorem 1 now tells us that [1—=A[ < 3,0y [(A5As) 4l
for some j. So, [1 = Al <> cq iy @, djr)| < (k= 1)u(A).

(f) follows by setting A = Az Or A\pin and doing some algebra. O

e Although coherence implies R.I.P., we do not get the right scaling for sparsity in the necessary
number of measurements.

Theorem 3 (Welch Bound). The coherence of a matriz A € C™*N with lo—normalized columns
satisfies pw(A) > ,/%.

Proof : See Theorem 5.7 from [1]. O

e Theorem 3 implies that (/,L(A))Q > mjzfﬁfll)

2 m(N—1
= (o) =552 mz 1)

= mZ(ﬁf , (N> m)

e In order to get €;(A) < e by Theorem 2 we need u(A)(k—1) <e

C1\2
= m2 % — We end up with quadratic dependence on sparsity!

e Sub-gaussian random matrices and bounded orthonormal (BON) results give us R.I.P. of
order k with m ~ C' - k - log®(IN)—, which scales much better (linearly) in k.



e Note that asymptotically, the lower bound for p(A) approaches \/—% as N — oo.
— There are constructions that match this asymptotic lower bound on coherence for small m and
N. An example follows:

Proposition 1 (Proposition 5.13 from [1]). For each prime number m > 5 there is an explicit

m x m? complex matriz A with p(A) = ﬁ
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