MTH 995-003: Intro to CS and Big Data

Spring 2014

Lecture 25 – April 01, 2014

Inst. Mark Iwen

Scribe: Atreyee Majumder

Contents

1 Coherence

1 Coherence

Definition 1. Let $A \in \mathbb{C}^{m \times N}$ be a matrix with ℓ_2 -normalized columns (i.e. such that $A = (\vec{a}_1, \ldots, \vec{a}_N)$ has $\|\vec{a}_j\| = 1 \quad \forall j \in [N]$). The coherence of A, $\mu(A)$ is

$$\mu(A) := \max_{i \neq j} |\langle \vec{a}_j, \vec{a}_i \rangle|$$

- If A is an orthogonal matrix, then, $\mu(A) = 0$. This is the best case.
- If A has two identical columns, then, $\mu(A) = 1$. This is the worst case.
- In general, $\mu(A) \in [0, 1]$. The smaller it is, the better.
- It turns out that matrices with low coherence have the R.I.P..
- In order to prove this we need Gershgorin's Disk Theorem.

Theorem 1 (Gershgorin's Disk Theorem). Let λ be an eigenvalue of a square matrix $A \in \mathbb{C}^{m \times m}$. Then, \exists an index $j \in [m]$ such that $|\lambda - A_{j,j}| \leq \sum_{l \in [m] - \{j\}} |A_{j,l}|$.

Proof: Let $\vec{u} \in \mathbb{C}^m - \{\vec{0}\}$ be an eigenvector for λ . Let $j \in [m]$ be such that $|\vec{u}_j| = ||\vec{u}||_{\infty}$. Then, $\sum_{l \in [m]} A_{j,l} u_l = \lambda u_j$ such that $\sum_{l \in [m] - \{j\}} A_{j,l} u_l = \lambda u_j - A_{j,j} u_j$. Therefore,

$$\begin{aligned} |\lambda - A_{j,j}| \ |u_j| &\leq \sum_{l \in [m] - \{j\}} |A_{j,l}| \ |u_l| \\ &\leq \|\vec{u}\|_{\infty} \sum_{l \in [m] - \{j\}} |A_{j,l}| \end{aligned}$$
(1)

Dividing through by $|u_j| = \|\vec{u}\|_{\infty}$ yields the desired result.

We can now show that a matrix with small coherence will also have reasonable Restricted Isometry Constants.

1

Theorem 2. Let $A \in \mathbb{C}^{m \times N}$ be a matrix with l_2 -normalized columns. Let $k \in [N]$. For all k-sparse vectors $\vec{x} \in \mathbb{C}^N$,

$$\left(1 - (k-1)\mu(A)\right) \|\vec{x}\|_2^2 \leq \|A\vec{x}\|_2^2 \leq \left(1 + (k-1)\mu(A)\right) \|\vec{x}\|_2^2 \tag{\dagger}$$

Note: If (†) is true then it implies that $A_S^*A_S$ has all eigenvalues in

$$\left[1 - \mu(A)(k-1), 1 + \mu(A)(k-1)\right] \quad \forall S \subset [\mathbf{N}] \text{ with } |\mathbf{S}| \le \mathbf{k}$$

- If (†) is true then it also implies that the R.I.C. $\epsilon_k(A) \leq \mu(A)(k-1)$

Proof of Theorem 2: Let $S \subseteq [N]$ have |S| = k. Then, $A_S^* A_S \in \mathbb{C}^{k \times k}$ is positive semi-definite and has k orthonormal eigenvectors.

- Let $\lambda_{max} = \text{largest eigenvalue} \ge \lambda_{min} = \text{smallest eigenvalue} \ge 0$.
- If \vec{x} has support \subseteq S, then $||A\vec{x}|| = ||A_S\vec{x}_S|| = \langle A_S^*A_S\vec{x}, \vec{x} \rangle \leq \lambda_{max} ||\vec{x}||_2^2$. Similarly, $||A\vec{x}|| = ||A_S\vec{x}_S|| = \langle A_S^*A_S\vec{x}, \vec{x} \rangle \geq \lambda_{min} ||\vec{x}||_2^2$. Thus, it suffices to bound $\lambda_{min}, \lambda_{max}$.
- Let $\lambda_{min} \leq \lambda \leq \lambda_{max}$ be an eigenvalue of $A_S^* A_S$.
- Note that $(A_S^*A_S)_{j,j} = 1 \ \forall j \in [k]$. Theorem 1 now tells us that $|1 \lambda| \leq \sum_{l \in [k] \{j\}} |(A_S^*A_S)_{j,l}|$ for some j. So, $|1 \lambda| \leq \sum_{l \in S \{j'\}} |\langle \vec{a}_l, \vec{a}_{j'} \rangle| \leq (k 1)\mu(A)$.

(†) follows by setting $\lambda = \lambda_{max}$ or λ_{min} and doing some algebra.

• Although coherence implies R.I.P., we **do not** get the right scaling for sparsity in the necessary number of measurements.

Theorem 3 (Welch Bound). The coherence of a matrix $A \in \mathbb{C}^{m \times N}$ with l_2 -normalized columns satisfies $\mu(A) \geq \sqrt{\frac{N-m}{m(N-1)}}$.

Proof: See Theorem 5.7 from [1].

• Theorem 3 implies that $(\mu(A))^2 \ge \frac{N-m}{m(N-1)}$ $\implies \left(\frac{1}{m(A)}\right)^2 \le \frac{m(N-1)}{N-m}, (m \ge 1)$

$$\implies m \gtrsim \left(\frac{1}{\mu(A)}\right)^2 , (N \gg m)$$

- In order to get $\epsilon_k(A) \leq \epsilon$ by Theorem 2 we need $\mu(A)(k-1) \leq \epsilon$ $\implies m \gtrsim \frac{(k-1)^2}{\epsilon^2}$ – We end up with quadratic dependence on sparsity!
- Sub-gaussian random matrices and bounded orthonormal (BON) results give us R.I.P. of order k with $m \sim C \cdot k \cdot \log^{c}(N)$, which scales much better (linearly) in k.

• Note that asymptotically, the lower bound for $\mu(A)$ approaches $\frac{1}{\sqrt{m}}$ as $N \to \infty$.

– There are constructions that match this asymptotic lower bound on coherence for small m and N. An example follows:

Proposition 1 (Proposition 5.13 from [1]). For each prime number $m \ge 5$ there is an explicit $m \times m^2$ complex matrix A with $\mu(A) = \frac{1}{\sqrt{m}}$.

References

[1] Simon Foucart, Holger Rauhut. A Mathematical Introduction to Compressive Sensing. Birkhauser Basel, 2013.