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1 Coherence

Definition 1. Let A ∈ Cm×N be a matrix with `2−normalized columns (i.e. such that A =
(~a1, . . . ,~aN ) has ‖~aj‖ = 1 ∀j ∈ [N]). The coherence of A, µ(A) is

µ(A) := max
i 6=j
|〈~aj ,~ai〉|

• If A is an orthogonal matrix, then, µ(A) = 0. This is the best case.

• If A has two identical columns, then, µ(A) = 1. This is the worst case.

• In general, µ(A) ∈ [0, 1]. The smaller it is, the better.

• It turns out that matrices with low coherence have the R.I.P..

• In order to prove this we need Gershgorin’s Disk Theorem.

Theorem 1 (Gershgorin’s Disk Theorem). Let λ be an eigenvalue of a square matrix A ∈ Cm×m.
Then, ∃ an index j ∈ [m] such that |λ−Aj,j | ≤

∑
l∈[m]−{j} |Aj,l|.

Proof: Let ~u ∈ Cm − {~0} be an eigenvector for λ. Let j ∈ [m] be such that |~uj | = ‖~u‖∞. Then,∑
l∈[m]Aj,l ul = λuj such that

∑
l∈[m]−{j}Aj,l ul = λuj −Aj,j uj . Therefore,

|λ−Aj,j | |uj | ≤
∑

l∈[m]−{j}

|Aj,l| |ul|

≤ ‖~u‖∞
∑

l∈[m]−{j}

|Aj,l| (1)

Dividing through by |uj | = ‖~u‖∞ yields the desired result.

We can now show that a matrix with small coherence will also have reasonable Restricted Isometry
Constants.
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Theorem 2. Let A ∈ Cm×N be a matrix with l2−normalized columns. Let k ∈ [N ]. For all
k-sparse vectors ~x ∈ CN ,(

1− (k − 1)µ(A)
)
‖~x‖22 ≤ ‖A~x‖22 ≤

(
1 + (k − 1)µ(A)

)
‖~x‖22 (†)

Note: If (†) is true then it implies that A∗SAS has all eigenvalues in[
1− µ(A)(k − 1), 1 + µ(A)(k − 1)

]
∀S ⊂ [N] with |S| ≤ k

– If (†) is true then it also implies that the R.I.C. εk(A) ≤ µ(A)(k − 1)

Proof of Theorem 2: Let S ⊆ [N ] have |S| = k. Then, A∗SAS ∈ Ck×k is positive semi-definite and
has k orthonormal eigenvectors.

• Let λmax = largest eigenvalue ≥ λmin = smallest eigenvalue ≥ 0.

• If ~x has support ⊆ S, then ‖A~x‖ = ‖AS~xS‖ = 〈A∗SAS~x, ~x〉 ≤ λmax‖~x‖22. Similarly, ‖A~x‖ =
‖AS~xS‖ = 〈A∗SAS~x, ~x〉 ≥ λmin‖~x‖22. Thus, it suffices to bound λmin, λmax.

• Let λmin ≤ λ ≤ λmax be an eigenvalue of A*
SAS .

• Note that (A∗SAS)j,j = 1 ∀j ∈ [k]. Theorem 1 now tells us that |1−λ| ≤
∑

l∈[k]−{j} |(A∗SAS)j,l|
for some j. So, |1− λ| ≤

∑
l∈S−{j′} |〈~al,~aj′〉| ≤ (k − 1)µ(A).

(†) follows by setting λ = λmax or λmin and doing some algebra.

• Although coherence implies R.I.P., we do not get the right scaling for sparsity in the necessary
number of measurements.

Theorem 3 (Welch Bound). The coherence of a matrix A ∈ Cm×N with l2−normalized columns

satisfies µ(A) ≥
√

N−m
m(N−1) .

Proof : See Theorem 5.7 from [1].

• Theorem 3 implies that
(
µ(A)

)2 ≥ N−m
m(N−1)

=⇒
(

1
µ(A)

)2
≤ m(N−1)

N−m , (m ≥ 1)

=⇒ m &
(

1
µ(A)

)2
, (N � m)

• In order to get εk(A) ≤ ε by Theorem 2 we need µ(A)(k − 1) ≤ ε

=⇒ m & (k−1)2
ε2

– We end up with quadratic dependence on sparsity!

• Sub-gaussian random matrices and bounded orthonormal (BON) results give us R.I.P. of
order k with m ∼ C · k · logc(N)−, which scales much better (linearly) in k.
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• Note that asymptotically, the lower bound for µ(A) approaches 1√
m

as N →∞.

– There are constructions that match this asymptotic lower bound on coherence for small m and
N . An example follows:

Proposition 1 (Proposition 5.13 from [1]). For each prime number m ≥ 5 there is an explicit
m×m2 complex matrix A with µ(A) = 1√

m
.

References

[1] Simon Foucart, Holger Rauhut. A Mathematical Introduction to Compressive Sensing.
Birkhauser Basel, 2013.

3


