MTH 995-003: Intro to CS and Big Data

Lecture 24 — Mar 27th, 2014

Inst. Mark Iwen

Scribe: Erik Bates

Spring 2014

1 Continuing from Lecture 23

Here we resume the proof of Lemma 3 from Lecture 23. Recall that we wanted to establish a bound

$$\mathsf{Vol}(B_r(\mathbf{p}) \cap \mathcal{M}) \ge f(r, \tau) \text{ for ``most'' } \mathbf{p} \in \mathcal{M}$$

for some function f of r and $\tau := \operatorname{reach}(\mathcal{M})$.

۱

Proof. We saw that if

$$B_{r'}(\mathbf{p}) \cap T_{\mathbf{p}} \subseteq \Pi_{T_{\mathbf{p}}}(B_r(\mathbf{p}) \cap \mathcal{M}) \tag{1}$$

for some

$$r' \ge \sqrt{1 - \frac{r^2}{4\tau^2}} \cdot r,$$

then we would obtain the desired result.

Now, from Lemma 1 of Lecture 23, we know that $\Pi_{T_{\mathbf{p}}}$ is invertible on $B_r(\mathbf{p}) \cap \mathcal{M}$ for all $r \in [0, \frac{\tau}{4})$. This fact implies that $\Pi_{T_{\mathbf{p}}}(B_r(\mathbf{p}) \cap \mathcal{M})$ is open in $T_{\mathbf{p}}$. Thus, there exists $s \in \mathbb{R}^+$ such that

$$B_s(\mathbf{p}) \cap T_{\mathbf{p}} \subseteq \Pi_{T_{\mathbf{p}}}(B_r(\mathbf{p}) \cap \mathcal{M}).$$
(2)

Let s^* be the supremum of all $s \in \mathbb{R}^+$ satisfying (2).

There is $\mathbf{y} \in \partial(B_{s^*}(\mathbf{p}) \cap T_{\mathbf{p}}) \cap \partial(\Pi_{T_{\mathbf{p}}}(B_r(\mathbf{p}) \cap \mathcal{M}))$. Set

$$\mathbf{x} := \Pi_{T_{\mathbf{p}}}^{-1}(\mathbf{y}).$$

One can see that $\mathbf{x} \in \partial(B_r(\mathbf{p}) \cap \mathcal{M})$. Hence

$$\|\mathbf{x} - \mathbf{p}\|_2 = r$$

as long as, e.g., $B_r(\mathbf{p}) \cap \partial \mathcal{M} = \emptyset$. Finally, set

 $t := \|\mathbf{x} - \mathbf{y}\|_2.$

Lemma 2 of Lecture 23 tells us

$$\angle \mathbf{ypx} \le \arcsin\left(\frac{r}{2\tau}\right),$$

implying

$$\frac{t}{r} \le \frac{r}{2\tau}.$$

And so

$$s^* \ge \sqrt{1 - \frac{r^2}{4\tau^2}} \cdot r,$$

meaning (1) follows by setting $r' := s^*$.

The discussion at the end of Lecture 22 now gives us a covering number bound for at least the interior of \mathcal{M} .

Definition 1. For a d-dimensional manifold $\mathcal{M} \subseteq \mathbb{R}^D$, the *r*-interior of \mathcal{M} is

$$\mathsf{int}_r(\mathcal{M}) \stackrel{\text{\tiny def}}{=} \{\mathbf{p} \in \mathcal{M} : B_r(\mathbf{p}) \cap \partial \mathcal{M} = \varnothing\}$$

We have proven the following result, which will help us prove Theorem 2, the desired manifold embedding result.

Theorem 1. Let $\mathcal{M} \subseteq \mathbb{R}^D$ be a d-dimensional manifold with $\tau := \operatorname{reach}(\mathcal{M}) > 0$. Let $r \in [0, \frac{\tau}{4})$. Then the covering number will obey

$$C_r(\operatorname{int}_r(\mathcal{M})) \leq \frac{\operatorname{Vol}_d(\mathcal{M})\left(1 - \frac{r^2}{4\tau^2}\right)^{\frac{-d}{2}}r^{-d}}{\operatorname{Vol}(unit\ ball\ in\ \mathbb{R}^d)}.$$

.

2 The Johnson-Lindenstrauss Lemma and Manifold Embeddings

We wanted to show that a random matrix (in our case, one with subgaussian entries) will nearly isometrically embed any compact, *d*-dimensional manifold $\mathcal{M} \subseteq \mathbb{R}^D$ with positive reach, into \mathbb{R}^m such that $m \ll D$. The following theorem tells us precisely what this means.

Theorem 2. Let $\mathcal{M} \subseteq \mathbb{R}^D$ be a d-dimensional, \mathcal{C}^2 -manifold with $\mathsf{Vol}_d(\mathcal{M}) < \infty$, $\tau := \mathsf{reach}(\mathcal{M}) > 0$, and

$$d(\mathbf{p}, \mathsf{int}_r(\mathcal{M})) \leq r \quad for \ all \ r \in \left[0, \frac{\tau}{4}\right), \ for \ all \ \mathbf{p} \in \mathcal{M}.$$

Let $\epsilon, \delta \in (0, 1)$. Finally, let $A \in \mathbb{R}^{m \times D}$ with i.i.d. subgaussian entries (with parameter c). Then

$$-\delta + (1-\epsilon) \|\mathbf{x} - \mathbf{y}\|_2 \le \left\| \frac{1}{\sqrt{m}} A(\mathbf{x} - \mathbf{y}) \right\|_2 \le (1+\epsilon) \|\mathbf{x} - \mathbf{y}\|_2 + \delta \quad \text{for all } \mathbf{x}, \mathbf{y} \in \mathcal{M}$$

with probability at least $p \in (0, 1)$, provided

$$m \ge \frac{(64c)(16c+1)}{\epsilon^2} \ln\left(\frac{8}{1-p}C_{\tilde{r}}^2(\mathsf{int}_{\tilde{r}}(\mathcal{M}))\right),$$

for

$$\tilde{r} := \min\left\{\sqrt{\frac{d}{D}}\frac{\delta}{18\sqrt{e}}, \frac{\tau}{4}\right\}.$$

• Theorem 1 tells us

$$C_{\widetilde{r}}(\operatorname{int}_{\widetilde{r}}(\mathcal{M})) \leq \frac{\operatorname{Vol}_{d}(\mathcal{M})}{\operatorname{Vol}(\operatorname{unit\ ball\ in}\ \mathbb{R}^{d})} \left(\frac{16}{15}\right)^{\frac{d}{2}} \max\left\{\sqrt{\frac{D}{d}} \cdot \frac{18\sqrt{e}}{\delta\tau}, \frac{4}{\tau}\right\}^{d}.$$

Thus,

$$m \sim C' \frac{d}{\epsilon^2} \ln \left(\frac{\widetilde{C}}{\min\{\tau, 1\}(1-p)\delta} \cdot \frac{D}{d} \right)$$

for D > 2d and constants C' and \widetilde{C} depending on c, and $\log(\operatorname{Vol}_d(\mathcal{M}))$, and assuming $d \ll D$.

With a bit more work, one can prove variants of Theorem 1 that make m independent of D, specifically

$$m \sim C' \frac{d}{\epsilon^2} \ln\left(\frac{\widetilde{C}d}{\min\{\tau, 1\}(1-p)\delta}\right).$$

With a substantial amount of work, one can prove

$$m \sim C' \frac{d}{\epsilon^2} \ln\left(\frac{\widetilde{C}d}{\min\{\tau, 1\}(1-p)}\right).$$

For these results, see [1, 2], respectively.

Let's now prove Theorem 2.

Proof. Let $C \subseteq \mathcal{M}$ be a minimal \tilde{r} -cover of $\operatorname{int}_{\tilde{r}}(\mathcal{M})$. Note that C is also a $2\tilde{r}$ -cover of $\mathcal{M} \subseteq \mathbb{R}^D$.

Theorem 1 of Lecture 14 guarantees that $\widetilde{A} := \frac{1}{\sqrt{m}}A$, with *m* as above, will satisfy

$$(1-\epsilon) \le \sqrt{1-\epsilon} \le \frac{\|A(\mathbf{p}-\mathbf{q})\|_2}{\|\mathbf{p}-\mathbf{q}\|_2} \le \sqrt{1+\epsilon} \le 1+\epsilon \quad \text{for all } \mathbf{p}, \mathbf{q} \in C$$
(3)

with probability at least $1 - \frac{1-p}{2}$.

Now, Theorem 1 of Lecture 15 guarantees that \widetilde{A} also has the RIP of order d for $\epsilon < 1$, with probability at least $1 - \frac{1-p}{2}$. That is, $\epsilon_d(\widetilde{A}) \in (0, 1)$, implying

$$\sigma_1(\widetilde{A}) \le 2\sqrt{2}\sqrt{\frac{D}{d}} \tag{4}$$

by Lemma 2 of Lecture 16. The union bound implies that (3) and (4) hold simultaneously with probability at least p.

Thus,

$$\begin{split} \|\widetilde{A}(\mathbf{x}-\mathbf{y})\|_{2} &\leq \|\widetilde{A}(\mathbf{x}-\mathbf{p}_{\mathbf{x}})\|_{2} + \|\widetilde{A}(\mathbf{p}_{\mathbf{x}}-\mathbf{p}_{\mathbf{y}})\|_{2} + \|\widetilde{A}(\mathbf{p}_{\mathbf{y}}-\mathbf{y})\|_{2} \\ &\leq 2\sqrt{2}\sqrt{\frac{D}{d}} \left(\|\mathbf{x}-\mathbf{p}_{\mathbf{x}}\|_{2} + \|\mathbf{p}_{\mathbf{y}}-\mathbf{y}\|_{2}\right) + (1+\epsilon)\|\mathbf{p}_{\mathbf{x}}-\mathbf{p}_{\mathbf{y}}\|_{2}, \end{split}$$

where $\mathbf{p}_{\mathbf{x}}$ and $\mathbf{p}_{\mathbf{y}}$ are the closest points in C to \mathbf{x} and \mathbf{y} , respectively. That is,

$$\mathbf{p}_{\mathbf{x}} = \operatorname*{arg\,min}_{\mathbf{p}\in C} \|\mathbf{p} - \mathbf{x}\|_2$$
 and $\mathbf{p}_{\mathbf{y}} = \operatorname*{arg\,min}_{\mathbf{p}\in C} \|\mathbf{p} - \mathbf{y}\|_2$.

As C is a $2\tilde{r}$ -cover, $\|\mathbf{x} - \mathbf{p}_{\mathbf{x}}\|_2$ and $\|\mathbf{p}_{\mathbf{y}} - \mathbf{y}\|_2$ are bounded from above by $2\tilde{r}$, while an additional application of the triangle inequality gives $\|\mathbf{p}_{\mathbf{x}} - \mathbf{p}_{\mathbf{y}}\|_2 \leq \|\mathbf{x} - \mathbf{y}\|_2 + 4\tilde{r}$. When used above, these estimates yield

$$\|\widetilde{A}(\mathbf{x}-\mathbf{y})\|_{2} \leq \frac{6\delta}{9} + (1+\epsilon)\|\mathbf{x}-\mathbf{y}\|_{2},$$

giving the desired upper bound. An analogous argument gives the desired lower bound. \Box

References

- Mark A. Iwen, Mauro Maggioni. Approximation of Points on Low-Dimensional Manifolds Via Random Linear Projections. J. CoRR, 1204.3337, 2012.
- [2] Armin Eftekhari, Michael B. Wakin. New Analysis of Manifold Embeddings and Signal Recovery from Compressive Measurements. J. CoRR, 1306.4748, 2013.