1 Continuing from Lecture 23

Here we resume the proof of Lemma 3 from Lecture 23. Recall that we wanted to establish a bound

$$
\operatorname{Vol}\left(B_{r}(\mathbf{p}) \cap \mathcal{M}\right) \geq f(r, \tau) \quad \text { for "most" } \mathbf{p} \in \mathcal{M}
$$

for some function f of r and $\tau:=\operatorname{reach}(\mathcal{M})$.
Proof. We saw that if

$$
\begin{equation*}
B_{r^{\prime}}(\mathbf{p}) \cap T_{\mathbf{p}} \subseteq \Pi_{T_{\mathbf{p}}}\left(B_{r}(\mathbf{p}) \cap \mathcal{M}\right) \tag{1}
\end{equation*}
$$

for some

$$
r^{\prime} \geq \sqrt{1-\frac{r^{2}}{4 \tau^{2}}} \cdot r
$$

then we would obtain the desired result.
Now, from Lemma 1 of Lecture 23, we know that $\Pi_{T_{\mathbf{p}}}$ is invertible on $B_{r}(\mathbf{p}) \cap \mathcal{M}$ for all $r \in\left[0, \frac{\tau}{4}\right)$. This fact implies that $\Pi_{T_{\mathbf{p}}}\left(B_{r}(\mathbf{p}) \cap \mathcal{M}\right)$ is open in $T_{\mathbf{p}}$. Thus, there exists $s \in \mathbb{R}^{+}$ such that

$$
\begin{equation*}
B_{s}(\mathbf{p}) \cap T_{\mathbf{p}} \subseteq \Pi_{T_{\mathbf{p}}}\left(B_{r}(\mathbf{p}) \cap \mathcal{M}\right) \tag{2}
\end{equation*}
$$

Let s^{*} be the supremum of all $s \in \mathbb{R}^{+}$satisfying (2).
There is $\mathbf{y} \in \partial\left(B_{s^{*}}(\mathbf{p}) \cap T_{\mathbf{p}}\right) \cap \partial\left(\Pi_{T_{\mathbf{p}}}\left(B_{r}(\mathbf{p}) \cap \mathcal{M}\right)\right)$. Set

$$
\mathbf{x}:=\Pi_{T_{\mathbf{p}}}^{-1}(\mathbf{y})
$$

One can see that $\mathbf{x} \in \partial\left(B_{r}(\mathbf{p}) \cap \mathcal{M}\right)$. Hence

$$
\|\mathbf{x}-\mathbf{p}\|_{2}=r
$$

as long as, e.g., $B_{r}(\mathbf{p}) \cap \partial \mathcal{M}=\emptyset$. Finally, set

$$
t:=\|\mathbf{x}-\mathbf{y}\|_{2}
$$

Lemma 2 of Lecture 23 tells us

$$
\angle \mathbf{y p x} \leq \arcsin \left(\frac{r}{2 \tau}\right)
$$

implying

$$
\frac{t}{r} \leq \frac{r}{2 \tau}
$$

And so

$$
s^{*} \geq \sqrt{1-\frac{r^{2}}{4 \tau^{2}}} \cdot r
$$

meaning (1) follows by setting $r^{\prime}:=s^{*}$.
The discussion at the end of Lecture 22 now gives us a covering number bound for at least the interior of \mathcal{M}.

Definition 1. For a d-dimensional manifold $\mathcal{M} \subseteq \mathbb{R}^{D}$, the \boldsymbol{r}-interior of \mathcal{M} is

$$
\operatorname{int}_{r}(\mathcal{M}) \stackrel{\text { def }}{=}\left\{\mathbf{p} \in \mathcal{M}: B_{r}(\mathbf{p}) \cap \partial \mathcal{M}=\varnothing\right\}
$$

We have proven the following result, which will help us prove Theorem 2, the desired manifold embedding result.

Theorem 1. Let $\mathcal{M} \subseteq \mathbb{R}^{D}$ be a d-dimensional manifold with $\tau:=\operatorname{reach}(\mathcal{M})>0$. Let $r \in\left[0, \frac{\tau}{4}\right)$. Then the covering number will obey

$$
C_{r}\left(\operatorname{int}_{r}(\mathcal{M})\right) \leq \frac{\operatorname{Vol}_{d}(\mathcal{M})\left(1-\frac{r^{2}}{4 \tau^{2}}\right)^{\frac{-d}{2}} r^{-d}}{\operatorname{Vol}\left(\text { unit ball in } \mathbb{R}^{d}\right)}
$$

2 The Johnson-Lindenstrauss Lemma and Manifold Embeddings

We wanted to show that a random matrix (in our case, one with subgaussian entries) will nearly isometrically embed any compact, d-dimensional manifold $\mathcal{M} \subseteq \mathbb{R}^{D}$ with positive reach, into R^{m} such that $m \ll D$. The following theorem tells us precisely what this means.

Theorem 2. Let $\mathcal{M} \subseteq \mathbb{R}^{D}$ be a d-dimensional, \mathcal{C}^{2}-manifold with $\operatorname{Vol}_{d}(\mathcal{M})<\infty, \tau:=$ $\operatorname{reach}(\mathcal{M})>0$, and

$$
d\left(\mathbf{p}, \operatorname{int}_{r}(\mathcal{M})\right) \leq r \quad \text { for all } r \in\left[0, \frac{\tau}{4}\right), \text { for all } \mathbf{p} \in \mathcal{M}
$$

Let $\epsilon, \delta \in(0,1)$. Finally, let $A \in \mathbb{R}^{m \times D}$ with i.i.d. subgaussian entries (with parameter c). Then

$$
-\delta+(1-\epsilon)\|\mathbf{x}-\mathbf{y}\|_{2} \leq\left\|\frac{1}{\sqrt{m}} A(\mathbf{x}-\mathbf{y})\right\|_{2} \leq(1+\epsilon)\|\mathbf{x}-\mathbf{y}\|_{2}+\delta \quad \text { for all } \mathbf{x}, \mathbf{y} \in \mathcal{M}
$$

with probability at least $p \in(0,1)$, provided

$$
m \geq \frac{(64 c)(16 c+1)}{\epsilon^{2}} \ln \left(\frac{8}{1-p} C_{\widetilde{r}}^{2}\left(\operatorname{int}_{\widetilde{r}}(\mathcal{M})\right)\right)
$$

for

$$
\tilde{r}:=\min \left\{\sqrt{\frac{d}{D}} \frac{\delta}{18 \sqrt{e}}, \frac{\tau}{4}\right\} .
$$

- Theorem 1 tells us

$$
C_{\widetilde{r}}\left(\operatorname{int}_{\widetilde{r}}(\mathcal{M})\right) \leq \frac{\operatorname{Vol}_{d}(\mathcal{M})}{\operatorname{Vol}\left(\text { unit ball in } \mathbb{R}^{d}\right)}\left(\frac{16}{15}\right)^{\frac{d}{2}} \max \left\{\sqrt{\frac{D}{d}} \cdot \frac{18 \sqrt{e}}{\delta \tau}, \frac{4}{\tau}\right\}^{d}
$$

Thus,

$$
m \sim C^{\prime} \frac{d}{\epsilon^{2}} \ln \left(\frac{\widetilde{C}}{\min \{\tau, 1\}(1-p) \delta} \cdot \frac{D}{d}\right)
$$

for $D>2 d$ and constants C^{\prime} and \widetilde{C} depending on c, and $\log \left(\operatorname{Vol}_{d}(\mathcal{M})\right)$, and assuming $d \ll D$.

With a bit more work, one can prove variants of Theorem 1 that make m independent of D, specifically

$$
m \sim C^{\prime} \frac{d}{\epsilon^{2}} \ln \left(\frac{\widetilde{C} d}{\min \{\tau, 1\}(1-p) \delta}\right)
$$

With a substantial amount of work, one can prove

$$
m \sim C^{\prime} \frac{d}{\epsilon^{2}} \ln \left(\frac{\widetilde{C} d}{\min \{\tau, 1\}(1-p)}\right)
$$

For these results, see [1, 2], respectively.
Let's now prove Theorem 2.
Proof. Let $C \subseteq \mathcal{M}$ be a minimal \widetilde{r}-cover of $\operatorname{int}_{\widetilde{r}}(\mathcal{M})$. Note that C is also a $2 \widetilde{r}$-cover of $\mathcal{M} \subseteq \mathbb{R}^{D}$.

Theorem 1 of Lecture 14 guarantees that $\widetilde{A}:=\frac{1}{\sqrt{m}} A$, with m as above, will satisfy

$$
\begin{equation*}
(1-\epsilon) \leq \sqrt{1-\epsilon} \leq \frac{\|A(\mathbf{p}-\mathbf{q})\|_{2}}{\|\mathbf{p}-\mathbf{q}\|_{2}} \leq \sqrt{1+\epsilon} \leq 1+\epsilon \quad \text { for all } \mathbf{p}, \mathbf{q} \in C \tag{3}
\end{equation*}
$$

with probability at least $1-\frac{1-p}{2}$.
Now, Theorem 1 of Lecture 15 guarantees that \widetilde{A} also has the RIP of order d for $\epsilon<1$, with probability at least $1-\frac{1-p}{2}$. That is, $\epsilon_{d}(\widetilde{A}) \in(0,1)$, implying

$$
\begin{equation*}
\sigma_{1}(\widetilde{A}) \leq 2 \sqrt{2} \sqrt{\frac{D}{d}} \tag{4}
\end{equation*}
$$

by Lemma 2 of Lecture 16. The union bound implies that (3) and (4) hold simultaneously with probability at least p.

Thus,

$$
\begin{aligned}
\|\widetilde{A}(\mathbf{x}-\mathbf{y})\|_{2} & \leq\left\|\widetilde{A}\left(\mathbf{x}-\mathbf{p}_{\mathbf{x}}\right)\right\|_{2}+\left\|\widetilde{A}\left(\mathbf{p}_{\mathbf{x}}-\mathbf{p}_{\mathbf{y}}\right)\right\|_{2}+\left\|\widetilde{A}\left(\mathbf{p}_{\mathbf{y}}-\mathbf{y}\right)\right\|_{2} \\
& \leq 2 \sqrt{2} \sqrt{\frac{D}{d}}\left(\left\|\mathbf{x}-\mathbf{p}_{\mathbf{x}}\right\|_{2}+\left\|\mathbf{p}_{\mathbf{y}}-\mathbf{y}\right\|_{2}\right)+(1+\epsilon)\left\|\mathbf{p}_{\mathbf{x}}-\mathbf{p}_{\mathbf{y}}\right\|_{2}
\end{aligned}
$$

where $\mathbf{p}_{\mathbf{x}}$ and $\mathbf{p}_{\mathbf{y}}$ are the closest points in C to \mathbf{x} and \mathbf{y}, respectively. That is,

$$
\mathbf{p}_{\mathbf{x}}=\underset{\mathbf{p} \in C}{\arg \min }\|\mathbf{p}-\mathbf{x}\|_{2} \quad \text { and } \quad \mathbf{p}_{\mathbf{y}}=\underset{\mathbf{p} \in C}{\arg \min }\|\mathbf{p}-\mathbf{y}\|_{2} .
$$

As C is a $2 \widetilde{r}$-cover, $\left\|\mathbf{x}-\mathbf{p}_{\mathbf{x}}\right\|_{2}$ and $\left\|\mathbf{p}_{\mathbf{y}}-\mathbf{y}\right\|_{2}$ are bounded from above by $2 \widetilde{r}$, while an additional application of the triangle inequality gives $\left\|\mathbf{p}_{\mathbf{x}}-\mathbf{p}_{\mathbf{y}}\right\|_{2} \leq\|\mathbf{x}-\mathbf{y}\|_{2}+4 \widetilde{r}$. When used above, these estimates yield

$$
\|\widetilde{A}(\mathbf{x}-\mathbf{y})\|_{2} \leq \frac{6 \delta}{9}+(1+\epsilon)\|\mathbf{x}-\mathbf{y}\|_{2}
$$

giving the desired upper bound. An analogous argument gives the desired lower bound.

References

[1] Mark A. Iwen, Mauro Maggioni. Approximation of Points on Low-Dimensional Manifolds Via Random Linear Projections. J. CoRR, 1204.3337, 2012.
[2] Armin Eftekhari, Michael B. Wakin. New Analysis of Manifold Embeddings and Signal Recovery from Compressive Measurements. J. CoRR, 1306.4748, 2013.

