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Lecture 24 — Mar 27th, 2014
Inst. Mark Iwen Scribe: Erik Bates

1 Continuing from Lecture 23

Here we resume the proof of Lemma 3 from Lecture 23. Recall that we wanted to establish
a bound

Vol(Br(p) ∩M) ≥ f(r, τ) for “most” p ∈M
for some function f of r and τ := reach(M).

Proof. We saw that if

Br′(p) ∩ Tp ⊆ ΠTp(Br(p) ∩M) (1)

for some

r′ ≥
√

1− r2

4τ 2
· r,

then we would obtain the desired result.

Now, from Lemma 1 of Lecture 23, we know that ΠTp is invertible on Br(p) ∩M for all
r ∈ [0, τ

4
). This fact implies that ΠTp(Br(p) ∩M) is open in Tp. Thus, there exists s ∈ R+

such that

Bs(p) ∩ Tp ⊆ ΠTp(Br(p) ∩M). (2)

Let s∗ be the supremum of all s ∈ R+ satisfying (2).

There is y ∈ ∂(Bs∗(p) ∩ Tp) ∩ ∂(ΠTp(Br(p) ∩M)). Set

x := Π−1Tp (y).

One can see that x ∈ ∂(Br(p) ∩M). Hence

‖x− p‖2 = r

as long as, e.g., Br(p) ∩ ∂M = ∅. Finally, set

t := ‖x− y‖2.
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Lemma 2 of Lecture 23 tells us

∠ypx ≤ arcsin
( r

2τ

)
,

implying
t

r
≤ r

2τ
.

And so

s∗ ≥
√

1− r2

4τ 2
· r,

meaning (1) follows by setting r′ := s∗.

The discussion at the end of Lecture 22 now gives us a covering number bound for at least
the interior of M.

Definition 1. For a d-dimensional manifoldM⊆ RD, the r-interior ofM is

intr(M)
def
= {p ∈M : Br(p) ∩ ∂M = ∅}

We have proven the following result, which will help us prove Theorem 2, the desired mani-
fold embedding result.

Theorem 1. Let M ⊆ RD be a d-dimensional manifold with τ := reach(M) > 0. Let
r ∈ [0, τ

4
). Then the covering number will obey

Cr
(
intr(M)

)
≤

Vold(M)
(

1− r2

4τ2

)−d
2
r−d

Vol(unit ball in Rd)
.
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2 The Johnson-Lindenstrauss Lemma and Manifold Em-

beddings

We wanted to show that a random matrix (in our case, one with subgaussian entries) will
nearly isometrically embed any compact, d-dimensional manifold M ⊆ RD with positive
reach, into Rm such that m << D. The following theorem tells us precisely what this means.

Theorem 2. Let M ⊆ RD be a d-dimensional, C2-manifold with Vold(M) < ∞, τ :=
reach(M) > 0, and

d
(
p, intr(M)

)
≤ r for all r ∈

[
0,
τ

4

)
, for all p ∈M.

Let ε, δ ∈ (0, 1). Finally, let A ∈ Rm×D with i.i.d. subgaussian entries (with parameter c).
Then

−δ + (1− ε)‖x− y‖2 ≤
∥∥∥∥ 1√

m
A(x− y)

∥∥∥∥
2

≤ (1 + ε)‖x− y‖2 + δ for all x,y ∈M

with probability at least p ∈ (0, 1), provided

m ≥ (64c)(16c+ 1)

ε2
ln
( 8

1− pC
2
r̃

(
intr̃(M)

))
,

for

r̃ := min

{√
d

D

δ

18
√
e
,
τ

4

}
.

• Theorem 1 tells us

Cr̃
(
intr̃(M)

)
≤ Vold(M)

Vol(unit ball in Rd)

(
16

15

) d
2

max

{√
D

d
· 18
√
e

δτ
,

4

τ

}d
.

Thus,

m ∼ C ′
d

ε2
ln

(
C̃

min{τ, 1}(1− p)δ ·
D

d

)
for D > 2d and constants C ′ and C̃ depending on c, and log (Vold(M)), and assuming
d� D.

With a bit more work, one can prove variants of Theorem 1 that make m independent of D,
specifically

m ∼ C ′
d

ε2
ln

(
C̃d

min{τ, 1}(1− p)δ

)
.

With a substantial amount of work, one can prove

m ∼ C ′
d

ε2
ln

(
C̃d

min{τ, 1}(1− p)

)
.
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For these results, see [1, 2], respectively.

Let’s now prove Theorem 2.

Proof. Let C ⊆ M be a minimal r̃-cover of intr̃(M). Note that C is also a 2r̃-cover of
M⊆ RD.

Theorem 1 of Lecture 14 guarantees that Ã := 1√
m
A, with m as above, will satisfy

(1− ε) ≤
√

1− ε ≤ ‖A(p− q)‖2
‖p− q‖2

≤
√

1 + ε ≤ 1 + ε for all p,q ∈ C (3)

with probability at least 1− 1−p
2

.

Now, Theorem 1 of Lecture 15 guarantees that Ã also has the RIP of order d for ε < 1, with
probability at least 1− 1−p

2
. That is, εd(Ã) ∈ (0, 1), implying

σ1(Ã) ≤ 2
√

2

√
D

d
(4)

by Lemma 2 of Lecture 16. The union bound implies that (3) and (4) hold simultaneously
with probability at least p.

Thus,

‖Ã(x− y)‖2 ≤ ‖Ã(x− px)‖2 + ‖Ã(px − py)‖2 + ‖Ã(py − y)‖2

≤ 2
√

2

√
D

d

(
‖x− px‖2 + ‖py − y‖2

)
+ (1 + ε)‖px − py‖2,

where px and py are the closest points in C to x and y, respectively. That is,

px = arg min
p∈C

‖p− x‖2 and py = arg min
p∈C

‖p− y‖2.

As C is a 2r̃-cover, ‖x − px‖2 and ‖py − y‖2 are bounded from above by 2r̃, while an
additional application of the triangle inequality gives ‖px − py‖2 ≤ ‖x − y‖2 + 4r̃. When
used above, these estimates yield

‖Ã(x− y)‖2 ≤
6δ

9
+ (1 + ε)‖x− y‖2,

giving the desired upper bound. An analogous argument gives the desired lower bound.
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