MTH 995-003: Intro to CS and Big Data	Spring 2014	
Lecture 23 - March 25, 2014		
Inst. Mark Iwen		Scribe: Atreyee Majumder

Contents

1 Homework: Reach and Projections onto Manifolds 1
1.1 Homework Problems (Due April 3, 2014) . 2

2 Toward Covering Numbers for Compact Manifolds

1 Homework: Reach and Projections onto Manifolds

- Let $\mathcal{M} \subseteq \mathbb{R}^{D}$ be a d-dimensional manifold. We define the projection onto \mathcal{M} by

$$
\Pi_{\mathcal{M}}(\vec{x}):=\text { the unique point } \vec{y} \in \overline{\mathcal{M}} \text { with }\|\vec{x}-\vec{y}\|_{2}=d(\vec{x}, \overline{\mathcal{M}}) \quad \forall \vec{x} \in D(\mathcal{M})
$$

- Let $\vec{x} \in \operatorname{tube}_{\tau}(\mathcal{M})$ where $\tau:=\operatorname{reach}(\mathcal{M})$. Furthermore, let $\mathrm{r}:=\mathrm{d}(\vec{x}, \mathcal{M})<\tau$.
- Suppose that $\Pi_{\mathcal{M}}(\vec{x})=\vec{m} \in$ the interior of \mathcal{M}.

Definition 1. The interior of \mathcal{M} is the set of points $\vec{z} \in \mathcal{M}$ such that $\exists \vec{u} \in$ the interior of R_{i}^{\star}, for some $i \in I$, with the property that $\Phi_{i}(\vec{u})=\vec{z}$.

1.1 Homework Problems (Due April 3, 2014)

Given the above setup, show the following:

1. See Lecture 21, section 1.2
2. Show that $\exists \vec{v} \in T_{\vec{m}}^{\perp},\|\vec{v}\|_{2}=1$, such that $\vec{x}=\vec{m}+r \cdot \vec{v}$

3. Show that \vec{v} from $\# 2$ does not depend on r, i.e., show that $\Pi_{\mathcal{M}}(\vec{m}+\tilde{r} \cdot \vec{v})=\vec{m}$ for all $\tilde{r} \in[0, r]$.
4. Let $\vec{z} \in \overline{\mathcal{M}}$. Show that $\Pi_{\mathcal{M}}^{-1}(\vec{z}) \cap \operatorname{tube}_{\tau}(\mathcal{M}) \subseteq \mathbb{R}^{D}$ is convex.
5. Let $\vec{m} \in \operatorname{interior}(\mathcal{M})$, let $\vec{v} \in \mathrm{~T}_{\vec{m}}^{\perp}$ with $\|\vec{v}\|_{2}=1$ and let $r \in[0, \tau)$.

Show that $\Pi_{\mathcal{M}}(\vec{m}+r \cdot \vec{v})=\vec{m}$.

Hint for \#5: Consider

$$
\epsilon(\vec{v}):=\sup \left\{r \in \mathbb{R}^{+} \mid \Pi_{\mathcal{M}}(\vec{m}+r \vec{v})=\vec{m}\right\} .
$$

Show that $\epsilon(\vec{v})>0 \Longrightarrow \epsilon(\vec{v}) \geq \operatorname{reach}(\mathcal{M})$. Then, argue that $\epsilon(\vec{v}) \neq 0$. You can waive your hands a little.

- This last question shows that "the open normal bundle about \mathcal{M} of radius τ ",

$$
\left\{\left(\vec{m}+T_{\vec{m}}^{\perp}\right) \cap B_{\tau}(\vec{m}) \mid \vec{m} \in \operatorname{interior}(\mathcal{M})\right\}
$$

is a subset of $\Pi_{\mathcal{M}}^{-1}(\operatorname{interior}(\mathcal{M}))$.

2 Toward Covering Numbers for Compact Manifolds

Recall the end of Lecture 22: We we want a lower bound for the d-dimensional volume

$$
\operatorname{vol}\left(B_{r}(\vec{p}) \cap \mathcal{M}\right)
$$

that holds for "most" $\vec{p} \in \mathcal{M}$. For this lower bound we need a couple of lemmas.
Lemma 1. Let $\mathcal{M} \subseteq \mathbb{R}^{D}$ be a d-dimensional manifold with $\tau:=\operatorname{reach}(\mathcal{M})>0$. Let $\vec{p} \in \mathcal{M}$ and $T_{\vec{p}}$ be the d-dimensional tangent space to \mathcal{M} at \vec{p}. Then $\Pi_{T_{\vec{p}}}$ is invertible on $\mathcal{M} \cap B_{\tau / 4}(\vec{p})$.

Proof: See [2] and [1].

Proof Idea: Let $\vec{x}, \vec{y} \in \mathcal{M} \cap B_{\tau / 4}(\vec{p})$ and consider a geodesic path from \vec{x} to \vec{y}.

What could go wrong?
1.) \mathcal{M} has more than one component in $B_{\tau / 4}(\vec{p})$, and \vec{x} and \vec{y} are not on the same component.

\Longrightarrow impossible by the definition of the reach.
2.) \vec{x} and \vec{y} are on a path that is entirely contained in $B_{\tau / 4}(\vec{p})$. Then $\Pi_{T_{\vec{p}}}(\vec{x})=\Pi_{T_{\vec{p}}}(\vec{y})$ means

\Longrightarrow impossible because the curvature of the path cannot be so high compared to τ.
Lemma 2. Let $\vec{p}, \vec{q} \in \mathcal{M}$ be such that $\|\vec{p}-\vec{q}\|_{2}<2 \cdot \tau:=2 \cdot \operatorname{reach}(\mathcal{M})$. Then, the angle between $(\vec{p}-\vec{q})$ and $\Pi_{T_{\vec{p}}}(\vec{p}-\vec{q}) \leq \sin ^{-1}\left(\frac{\|\vec{p}-\vec{q}\|_{2}}{2 \tau}\right)$.

Proof: Let \vec{v} be a unit vector along $\left(I-\Pi_{T_{\vec{p}}}\right)(\vec{p}-\vec{q}) \in T_{\vec{p}}$ and set $\vec{z}=\vec{p}+\tau \cdot \vec{v}$

- Note that $\|\vec{z}-\vec{q}\|_{2} \geq \tau$ since $\vec{z} \in \overline{D(\mathcal{M})} \cap T_{\vec{p}}^{\perp}$ by HW $\# 5$ above.
- Let l be the line through \vec{z} that is perpendicular to $(\vec{p}-\vec{q})$
- Let \vec{z}^{\prime} be the intersection of 1 and $(\vec{p}-\vec{q})$
- Note that $\angle \vec{z} \vec{p} \vec{q} \leq 90^{\circ}$ (by construction of \vec{z})
- $\angle \vec{z} \vec{q} \vec{p} \leq \angle \vec{z} \vec{p} \vec{q} \leq 90^{\circ}$
since $\|\vec{z}-\vec{q}\|_{2} \geq\|\vec{z}-\vec{p}\|_{2}$
- Hence, \vec{z}^{\prime} is in between \vec{p} and \vec{q} (i.e., our picture is accurate). Also, more importantly,
(\dagger) implies that $\left\|\vec{z}^{\prime}-\vec{p}\right\|_{2} \leq \frac{1}{2}\|\vec{p}-\vec{q}\|_{2}$
$\Longrightarrow \sin \left(\angle \vec{p} \vec{z} \vec{z}^{\prime}\right) \leq \frac{\|\vec{p}-\vec{q}\|_{2}}{2 \tau}$
We can now obtain the desired lower bound.

Lemma 3. Let $\vec{p} \in \operatorname{interior}(\mathcal{M}), \tau=\operatorname{reach}(\mathcal{M})$ and $r \in[0, \tau / 4)$. Then,

$$
\operatorname{vol}\left(B_{r}(\vec{p}) \cap \mathcal{M}\right) \geq\left(1-\frac{r^{2}}{4 \tau^{2}}\right)^{\frac{d}{2}} \cdot r^{d} \cdot \operatorname{vol}\left(\text { unit ball in } \mathbb{R}^{d}\right)
$$

$\forall \vec{p}$ s.t. $B_{r}(\vec{p}) \cap \operatorname{boundary}(\mathcal{M})=\emptyset$.
Proof: We will show $\exists r^{\prime} \geq \sqrt{1-\frac{r^{2}}{4 \tau^{2}}} \cdot r$ such that
$(*) \quad B_{r^{\prime}}(\vec{p}) \cap T_{\vec{p}} \subset \Pi_{T_{\vec{p}}}\left(B_{r}(\vec{p}) \cap \mathcal{M}\right)$
Note: (*) implies the desired bound since

$$
\begin{array}{rlr}
\operatorname{vol}\left(B_{r}(\vec{p}) \cap \mathcal{M}\right) & \\
\quad \geq \operatorname{vol}\left(\Pi_{T_{\vec{p}}}\left(B_{r}(\vec{p}) \cap \mathcal{M}\right)\right) & \text { (projections are non-expansive) } \\
\quad \geq \operatorname{vol}\left(B_{r^{\prime}}(\vec{p}) \cap T_{\vec{p}}\right) & \left(\text { by }\left(^{*}\right)\right) \\
\quad=\left(r^{\prime}\right)^{d} \cdot \operatorname{vol}\left(\text { unit ball in } T_{\vec{p}}\right) &
\end{array}
$$

Thus, it suffices to show (*). We will do this in the next lecture.

References

[1] Partha Niyogi, Stephen Smale, Shmuel Weinberger. Finding the Homology of Submanifolds with High Confidence from Random Samples. J. Discrete Comput. Geom., 39(1): 419-441, 2008.
[2] Armin Eftekhari, Michael B. Wakin. New Analysis of Manifold Embeddings and Signal Recovery from Compressive Measurements. J. CoRR , 1306.4748, 2013.

