MTH 995-003: Intro to CS and Big Data

Spring 2014

Lecture 23 – March 25, 2014

Inst. Mark Iwen

Scribe: Atreyee Majumder

Contents

1	Homework: Reach and Projections onto Manifolds	1
	1.1 Homework Problems (Due April 3, 2014)	2
2	Toward Covering Numbers for Compact Manifolds	3

1 Homework: Reach and Projections onto Manifolds

• Let $\mathcal{M} \subseteq \mathbb{R}^D$ be a *d*-dimensional manifold. We define the projection onto \mathcal{M} by

 $\Pi_{\mathcal{M}}(\vec{x}) := \text{ the unique point } \vec{y} \in \overline{\mathcal{M}} \text{ with } \|\vec{x} - \vec{y}\|_2 = d(\vec{x}, \overline{\mathcal{M}}) \quad \forall \vec{x} \in D(\mathcal{M})$

- Let $\vec{x} \in \text{tube}_{\tau}(\mathcal{M})$ where $\tau := \text{reach}(\mathcal{M})$. Furthermore, let $\mathbf{r} := \mathbf{d}(\vec{x}, \mathcal{M}) < \tau$.
- Suppose that $\Pi_{\mathcal{M}}(\vec{x}) = \vec{m} \in$ the interior of \mathcal{M} .

Definition 1. The interior of \mathcal{M} is the set of points $\vec{z} \in \mathcal{M}$ such that $\exists \vec{u} \in$ the interior of R_i^* , for some $i \in I$, with the property that $\Phi_i(\vec{u}) = \vec{z}$.

1.1 Homework Problems (Due April 3, 2014)

Given the above setup, show the following:

- 1. See Lecture 21, section 1.2
- 2. Show that $\exists \vec{v} \in T_{\vec{m}}^{\perp}$, $\|\vec{v}\|_2 = 1$, such that $\vec{x} = \vec{m} + r \cdot \vec{v}$

- 3. Show that \vec{v} from #2 does not depend on r, i.e., show that $\Pi_{\mathcal{M}}(\vec{m}+\tilde{r}\cdot\vec{v})=\vec{m}$ for all $\tilde{r}\in[0,r]$.
- 4. Let $\vec{z} \in \overline{\mathcal{M}}$. Show that $\Pi_{\mathcal{M}}^{-1}(\vec{z}) \cap \text{tube}_{\tau}(\mathcal{M}) \subseteq \mathbb{R}^{D}$ is convex.
- 5. Let $\vec{m} \in \operatorname{interior}(\mathcal{M})$, let $\vec{v} \in \mathrm{T}_{\vec{m}}^{\perp}$ with $\| \vec{v} \|_2 = 1$ and let $r \in [0, \tau)$. Show that $\Pi_{\mathcal{M}}(\vec{m} + r \cdot \vec{v}) = \vec{m}$.

Hint for #5: Consider

$$\epsilon(\vec{v}) := \sup\left\{r \in \mathbb{R}^+ \middle| \Pi_{\mathcal{M}}(\vec{m} + r\vec{v}) = \vec{m}\right\}.$$

Show that $\epsilon(\vec{v}) > 0 \implies \epsilon(\vec{v}) \ge \operatorname{reach}(\mathcal{M})$. Then, argue that $\epsilon(\vec{v}) \ne 0$. You can waive your hands a little.

• This last question shows that "the open normal bundle about \mathcal{M} of radius τ ",

$$\left\{ \left(\vec{m} + T_{\vec{m}}^{\perp}\right) \cap B_{\tau}(\vec{m}) \mid \vec{m} \in \operatorname{interior}(\mathcal{M}) \right\},\$$

is a subset of $\Pi^{-1}_{\mathcal{M}}(\operatorname{interior}(\mathcal{M})).$

2 Toward Covering Numbers for Compact Manifolds

Recall the end of Lecture 22: We we want a lower bound for the *d*-dimensional volume

$$\operatorname{vol}(B_r(\vec{p}) \cap \mathcal{M})$$

that holds for "most" $\vec{p} \in \mathcal{M}$. For this lower bound we need a couple of lemmas.

Lemma 1. Let $\mathcal{M} \subseteq \mathbb{R}^D$ be a d-dimensional manifold with $\tau := \operatorname{reach}(\mathcal{M}) > 0$. Let $\vec{p} \in \mathcal{M}$ and $T_{\vec{p}}$ be the d-dimensional tangent space to \mathcal{M} at \vec{p} . Then $\Pi_{T_{\vec{p}}}$ is invertible on $\mathcal{M} \cap B_{\tau/4}(\vec{p})$.

Proof: See [2] and [1].

Proof Idea: Let $\vec{x}, \vec{y} \in \mathcal{M} \cap B_{\tau/4}(\vec{p})$ and consider a geodesic path from \vec{x} to \vec{y} .

What could go wrong?

1.) \mathcal{M} has more than one component in $B_{\tau/4}(\vec{p})$, and \vec{x} and \vec{y} are not on the same component.

 $[\]implies$ impossible by the definition of the reach.

2.) \vec{x} and \vec{y} are on a path that is entirely contained in $B_{\tau/4}(\vec{p})$. Then $\Pi_{T_{\vec{p}}}(\vec{x}) = \Pi_{T_{\vec{p}}}(\vec{y})$ means

 \implies impossible because the curvature of the path cannot be so high compared to τ .

Lemma 2. Let $\vec{p}, \vec{q} \in \mathcal{M}$ be such that $\|\vec{p} - \vec{q}\|_2 < 2 \cdot \tau := 2 \cdot \operatorname{reach}(\mathcal{M})$. Then, the angle between $(\vec{p} - \vec{q})$ and $\Pi_{T_{\vec{p}}}(\vec{p} - \vec{q}) \leq \sin^{-1}\left(\frac{\|\vec{p} - \vec{q}\|_2}{2\tau}\right)$.

Proof: Let \vec{v} be a unit vector along $(I - \prod_{T_{\vec{p}}})(\vec{p} - \vec{q}) \in T_{\vec{p}}^{\perp}$ and set $\vec{z} = \vec{p} + \tau \cdot \vec{v}$

- Note that $\| \vec{z} \vec{q} \|_2 \ge \tau$ since $\vec{z} \in \overline{D(\mathcal{M})} \cap T_{\vec{p}}^{\perp}$ by HW #5 above.
- \bullet Let l be the line through \vec{z} that is perpendicular to $(\vec{p}-\vec{q})$
- \bullet Let $\vec{z}\,'$ be the intersection of l and $(\vec{p}-\vec{q})$

- Note that $\angle \vec{z} \, \vec{p} \, \vec{q} \leq 90^{\circ}$ (by construction of \vec{z})
- $\angle \vec{z} \vec{q} \vec{p} \leq \angle \vec{z} \vec{p} \vec{q} \leq 90^{\circ}$ (†) since $\| \vec{z} - \vec{q} \|_2 \geq \| \vec{z} - \vec{p} \|_2$
- Hence, \vec{z}' is in between \vec{p} and \vec{q} (i.e., our picture is accurate). Also, more importantly,
- (†) implies that $\|\vec{z}' \vec{p}\|_2 \leq \frac{1}{2} \|\vec{p} \vec{q}\|_2$ $\implies \sin(\angle \vec{p} \, \vec{z} \, \vec{z}') \leq \frac{\|\vec{p} - \vec{q}\|_2}{2\tau}$

We can now obtain the desired lower bound.

Lemma 3. Let $\vec{p} \in \operatorname{interior}(\mathcal{M})$, $\tau = \operatorname{reach}(\mathcal{M})$ and $r \in [0, \tau/4)$. Then,

$$\operatorname{vol}(B_r(\vec{p}) \cap \mathcal{M}) \ge \left(1 - \frac{r^2}{4\tau^2}\right)^{\frac{d}{2}} \cdot r^d \cdot \operatorname{vol}\left(\operatorname{unit\ ball\ in}\ \mathbb{R}^d\right)$$

 $\forall \vec{p} \ s.t. \ B_r(\vec{p}) \cap \text{boundary}(\mathcal{M}) = \emptyset.$

Proof: We will show $\exists r' \geq \sqrt{1 - \frac{r^2}{4\tau^2}} \cdot r$ such that

$$(*) \qquad \qquad B_{r'}(\vec{p}) \cap T_{\vec{p}} \subset \Pi_{T_{\vec{v}}}(B_r(\vec{p}) \cap \mathcal{M})$$

Note: (*) implies the desired bound since

$$\operatorname{vol}(B_r(\vec{p}) \cap \mathcal{M}) \\ \geq \operatorname{vol}\left(\Pi_{T_{\vec{p}}}(B_r(\vec{p}) \cap \mathcal{M})\right) \\ \geq \operatorname{vol}(B_{r'}(\vec{p}) \cap T_{\vec{p}}) \\ = (r')^d \cdot \operatorname{vol} (\operatorname{unit} \operatorname{ball} \operatorname{in} T_{\vec{p}})$$

(projections are non-expansive)
(by (*))

Thus, it suffices to show (*). We will do this in the next lecture.

References

- Partha Niyogi, Stephen Smale, Shmuel Weinberger. Finding the Homology of Submanifolds with High Confidence from Random Samples. J. Discrete Comput. Geom., 39(1): 419–441, 2008.
- [2] Armin Eftekhari, Michael B. Wakin. New Analysis of Manifold Embeddings and Signal Recovery from Compressive Measurements. J. CoRR , 1306.4748, 2013.