1 Manifold models for Data in \mathbb{R}^{D}

- A more general model for "intrinsically simple", intrinsically low-dimensional data. Sparsity is a special case.
- Consider a \mathcal{C}^{2} and 1-1 function $\Phi: \mathbb{R}^{d} \rightarrow \mathbb{R}^{D}, \Phi=\left(\Phi_{1}, \cdots, \Phi_{D}\right)$, where $\Phi_{j}: \mathbb{R}^{d} \rightarrow \mathbb{R}, \forall j \in[D]$.
- The domains of each Φ will be always be a "regular region" $R^{*} \subset \mathbb{R}^{d}$ ("regular" means here that the boundary of R^{*} is \mathcal{C}^{2}, and that R^{*} is convex). We will call $\Phi\left(R^{*}\right) \subset \mathbb{R}^{D}$ a simple d-dimensional manifold.
e.g.

Definition 1. Recall the derivative of $\Phi: \mathbb{R}^{d} \rightarrow \mathbb{R}^{D}$ at $\vec{p} \in R^{*}$ is

$$
\left.D \Phi\right|_{\vec{p}}:=\left(\begin{array}{cccc}
\frac{\partial \Phi_{1}}{\partial x_{1}}(\vec{p}) & \frac{\partial \Phi_{1}}{\partial x_{2}}(\vec{p}) & \cdots & \frac{\partial \Phi_{1}}{\partial x_{1}}(\vec{p}) \\
\frac{\partial \Phi_{2}}{\partial x_{1}}(\vec{p}) & \frac{\partial \Phi_{2}}{\partial x_{2}}(\vec{p}) & \cdots & \frac{\partial \Phi_{2}}{\partial x_{d}}(\vec{p}) \\
\vdots & \vdots & \vdots & \vdots \\
\frac{\partial \Phi_{D}}{\partial x_{1}}(\vec{p}) & \frac{\partial \Phi_{D}}{\partial x_{2}}(\vec{p}) & \cdots & \frac{\partial \Phi_{D}}{\partial x_{d}}(\vec{p})
\end{array}\right) \in \mathbb{R}^{D \times d}
$$

The columns of $\left.D \Phi\right|_{\vec{p}}$ span the tangent space to the d-dimensional manifold $\Phi\left(R^{*}\right)$ at $\Phi(\vec{p})$.

The column span $\left\{\left.D \Phi\right|_{\vec{p}}\right\}$ is a d-dim subspace and the affine subspace parallel to it passing through $\Phi(\vec{p})$ is tangent to $\Phi\left(R^{*}\right)$ at $\Phi(\vec{p})$.

Definition 2. The d-dimensional volume element of $\Phi\left(\mathbb{R}^{*}\right)$ is

$$
\left.d V\right|_{\vec{p}}:=\sqrt{\operatorname{det}\left(\left.\left.D \Phi\right|_{\vec{p}} ^{T} D \Phi\right|_{\vec{p}}\right)}=\prod_{j=1}^{d} \sigma_{j}\left(\left.D \Phi\right|_{\vec{p}}\right) .
$$

-The d-dimensional volume of $\Phi\left(R^{*}\right)$ is $\int_{R^{*}} d V$

1.1 Examples

Example 1. Suppose $\vec{c}:[0,1] \rightarrow \mathbb{R}^{D}$ parametrizes a path. We can calculate the length of the path by $\int_{0}^{1}\left\|\vec{c}^{\prime}(t)\right\|_{2} d t$. The area (i.e., arc length) element is $d V=\left\|\vec{c}^{\prime}(t)\right\|$, and $R^{*}=[0,1]$, since

$$
\vec{c}^{\prime}=\left(\begin{array}{c}
\frac{\partial c_{1}}{\partial t} \\
\vdots \\
\frac{\partial c_{D}}{\partial t}
\end{array}\right)
$$

where $\vec{c}=\left(c_{1}, \cdots, c_{D}\right) ; c_{j}:[0,1] \rightarrow \mathbb{R}$.
Example 2. Find the surface area of $A=\left\{(x, y, z) \mid x^{2}+y^{2}+z^{2}=1, z \geq 0\right\}$.
$-A=\Phi\left(R^{*}\right)$ where R^{*} is the 2 -dimensional rectangle $[0,2 \pi] \times[0, \pi / 2]$, and $\Phi(\theta, \phi)=(\cos \theta \sin \phi, \sin \theta \sin \phi, \cos \phi)$. Thus, the upper half of the sphere is a simple 2-dimensional manifold according to our definition, and $d V$ can be computed by

$$
D \phi=\left(\begin{array}{cc}
-\sin \theta \sin \phi & \cos \theta \cos \phi \\
\cos \theta \sin \phi & \sin \theta \cos \phi \\
0 & -\sin \phi
\end{array}\right)
$$

Thus,

$$
D \Phi^{T} D \Phi=\left(\begin{array}{cc}
\sin ^{2} \phi & 0 \\
0 & 1
\end{array}\right)
$$

We can now see that $d V=\sin \phi \Rightarrow$, and the surface area of the upper half of the sphere is

$$
\int_{R^{*}} d V=\int_{0}^{2 \pi} \int_{0}^{\frac{\pi}{2}} \sin \phi d \phi d \theta=2 \pi
$$

- Simple manifolds are a bit too simple, so we will combine several simple manifolds to parametrize more complicated subsets of \mathbb{R}^{D}.

Definition 3. When I say that $\mathcal{M} \subset \mathbb{R}^{D}$ is a d-dimensional manifold, I mean that $\exists I \subset Z$ (finite) such that
$1 R_{i}^{*} \subset \mathbb{R}^{d}$, is a regular region $\forall i \in I$
2 $\Phi_{i}: R_{i}^{*} \rightarrow \mathbb{R}^{D}$ that are \mathcal{C}^{2}, 1-1 functions on R_{i}^{*} s.t.
$3 \Phi_{i}\left(R_{i}^{*} \cap R_{j}^{*}\right)=\Phi_{j}\left(R_{i}^{*} \cap R_{j}^{*}\right), \forall i, j \in I$ with $R_{i}^{*} \cap R_{j}^{*} \neq \emptyset$ and
$4 \mathcal{M}=\cup_{i \in I} \Phi_{i}\left(R_{i}^{*}\right)$

I will call $\left(\Phi_{i}, \Phi_{j}\right)_{i \in I}$ an atlas for $\mathcal{M} \subset \mathbb{R}^{D}$.

- I will also generally assume that \mathcal{M} is path connected (i.e \exists a \mathcal{C}^{2}-path, $\vec{p}:[0,1] \rightarrow \mathcal{M}$, for any $\vec{x}, \vec{y} \in M$ s.t $\vec{p}(0)=\vec{x}$ and $\vec{p}(1)=\vec{y})$

Definition 4. Given a d-dimensional $\mathcal{M} \subset \mathbb{R}^{D}$, we define the geodesic distance $d_{\mathcal{M}}: \mathcal{M} \times \mathcal{M} \rightarrow \mathbb{R}^{+}$ by $d_{M}(\vec{x}, \vec{y}):=\inf _{\substack{\text { path } \vec{p} \cdot[0,1] \rightarrow M \\ \text { with } \vec{p} 0=\vec{x} \\ \text { and } \vec{p}(1)=\vec{y}}} \int_{0}^{1}\left\|\vec{p}^{\prime}(t)\right\|_{2} d t \quad$ (i.e., the shortest distance from \vec{x} to \vec{y} on M)

1.2 Homework

Show that $\left\{\vec{z} \in R^{D},\|\vec{z}\|_{0}=d\right\} \subset R^{D}$ is a d-dimensional manifold by constructing an atlas.

References

[1] Partha Niyogi, Stephen Smale, Shmuel Weinberger. Finding the Homology of Submanifolds with High Condence from Random Samples. J. Discrete Comput. Geom., 39(1): 419-441, 2008.
[2] Mira Bernstein, Vin De Silva, John C. Langford, Joshua B. Tenenbaum. Graph Approximations to Geodesics on Embedded Manifolds. 2000.
[3] Richard G. Baraniuk, Michael B. Wakin. Random Projections of Smooth Manifolds. J. Found. Comput. Math., 9(1): 51-77, 2009.
[4] Mark A. Iwen, Mauro Maggioni. Approximation of Points on Low-Dimensional Manifolds Via Random Linear Projections. J. CoRR, 1204.3337, 2012.
[5] Armin Eftekhari, Michael B. Wakin. New Analysis of Manifold Embeddings and Signal Recovery from Compressive Measurements. J. CoRR, 1306.4748, 2013.

