MTH 995-003: Intro to CS and Big Data

Spring 2014

Lecture 21 — Mar 18th, 2014

Inst. Mark Iwen

Scribe: Xianfeng Hu

1 Manifold models for Data in \mathbb{R}^D

– A more general model for "intrinsically simple", intrinsically low-dimensional data. Sparsity is a special case.

- Consider a \mathcal{C}^2 and 1-1 function $\Phi: \mathbb{R}^d \to \mathbb{R}^D$, $\Phi = (\Phi_1, \cdots, \Phi_D)$, where $\Phi_j: \mathbb{R}^d \to \mathbb{R}, \forall j \in [D]$.

– The domains of each Φ will be always be a "regular region" $R^* \subset \mathbb{R}^d$ ("regular" means here that the boundary of R^* is \mathcal{C}^2 , and that R^* is convex). We will call $\Phi(R^*) \subset \mathbb{R}^D$ a simple d-dimensional manifold.

Definition 1. Recall the derivative of $\Phi : \mathbb{R}^d \to \mathbb{R}^D$ at $\vec{p} \in R^*$ is

$$D\Phi|_{\vec{p}} := \begin{pmatrix} \frac{\partial \Phi_1}{\partial x_1}(\vec{p}) & \frac{\partial \Phi_1}{\partial x_2}(\vec{p}) & \cdots & \frac{\partial \Phi_1}{\partial x_d}(\vec{p}) \\ \frac{\partial \Phi_2}{\partial x_1}(\vec{p}) & \frac{\partial \Phi_2}{\partial x_2}(\vec{p}) & \cdots & \frac{\partial \Phi_2}{\partial x_d}(\vec{p}) \\ \vdots & \vdots & \vdots & \vdots \\ \frac{\partial \Phi_D}{\partial x_1}(\vec{p}) & \frac{\partial \Phi_D}{\partial x_2}(\vec{p}) & \cdots & \frac{\partial \Phi_D}{\partial x_d}(\vec{p}) \end{pmatrix} \in \mathbb{R}^{D \times d}$$

The columns of $D\Phi|_{\vec{p}}$ span the tangent space to the d-dimensional manifold $\Phi(R^*)$ at $\Phi(\vec{p})$.

The column span{ $D\Phi|_{\vec{p}}$ } is a d-dim subspace and the affine subspace parallel to it passing through $\Phi(\vec{p})$ is tangent to $\Phi(R^*)$ at $\Phi(\vec{p})$.

Definition 2. The d-dimensional volume element of $\Phi(\mathbb{R}^*)$ is

$$dV|_{\vec{p}} := \sqrt{\det\left(D\Phi|_{\vec{p}} T D\Phi|_{\vec{p}}\right)} = \prod_{j=1}^{d} \sigma_j(D\Phi|_{\vec{p}})$$

-The *d*-dimensional volume of $\Phi(R^*)$ is $\int_{R^*} dV$

1.1 Examples

Example 1. Suppose $\vec{c}: [0,1] \to \mathbb{R}^D$ parametrizes a path. We can calculate the length of the path by $\int_0^1 \|\vec{c}'(t)\|_2 dt$. The area (i.e., arc length) element is $dV = \|\vec{c}'(t)\|$, and $R^* = [0,1]$, since

$$\vec{c}' = \begin{pmatrix} \frac{\partial c_1}{\partial t} \\ \vdots \\ \frac{\partial c_D}{\partial t} \end{pmatrix}$$

where $\vec{c} = (c_1, \cdots, c_D); c_j : [0, 1] \to \mathbb{R}.$

Example 2. Find the surface area of $A = \{(x, y, z) | x^2 + y^2 + z^2 = 1, z \ge 0\}.$

 $-A = \Phi(R^*)$ where R^* is the 2-dimensional rectangle $[0, 2\pi] \times [0, \pi/2]$, and $\Phi(\theta, \phi) = (\cos \theta \sin \phi, \sin \theta \sin \phi, \cos \phi)$. Thus, the upper half of the sphere is a simple 2-dimensional manifold according to our definition, and dV can be computed by

$$D\phi = \begin{pmatrix} -\sin\theta\sin\phi & \cos\theta\cos\phi\\ \cos\theta\sin\phi & \sin\theta\cos\phi\\ 0 & -\sin\phi \end{pmatrix}.$$

Thus,

$$D\Phi^T D\Phi = \left(\begin{array}{cc} \sin^2 \phi & 0\\ 0 & 1 \end{array}\right).$$

We can now see that $dV = \sin \phi \Rightarrow$, and the surface area of the upper half of the sphere is

$$\int_{R^*} dV = \int_0^{2\pi} \int_0^{\frac{\pi}{2}} \sin \phi \, d\phi \, d\theta = 2\pi.$$

– Simple manifolds are a bit too simple, so we will combine several simple manifolds to parametrize more complicated subsets of \mathbb{R}^D .

Definition 3. When I say that $\mathcal{M} \subset \mathbb{R}^D$ is a d-dimensional manifold, I mean that $\exists I \subset Z$ (finite) such that

- 1 $R_i^* \subset \mathbb{R}^d$, is a regular region $\forall i \in I$
- 2 $\Phi_i : R_i^* \to \mathbb{R}^D$ that are \mathcal{C}^2 , 1-1 functions on R_i^* s.t.
- 3 $\Phi_i(R_i^* \cap R_j^*) = \Phi_j(R_i^* \cap R_j^*), \forall i, j \in I \text{ with } R_i^* \cap R_j^* \neq \emptyset \text{ and}$
- $4 \mathcal{M} = \bigcup_{i \in I} \Phi_i(R_i^*)$

I will call $(\Phi_i, \Phi_j)_{i \in I}$ an atlas for $\mathcal{M} \subset \mathbb{R}^D$.

- I will also generally assume that \mathcal{M} is path connected (i.e $\exists \ a \ C^2$ -path, $\vec{p} : [0,1] \to \mathcal{M}$, for any $\vec{x}, \vec{y} \in M$ s.t $\vec{p}(0) = \vec{x}$ and $\vec{p}(1) = \vec{y}$)

Definition 4. Given a d-dimensional $\mathcal{M} \subset \mathbb{R}^D$, we define the geodesic distance $d_{\mathcal{M}} : \mathcal{M} \times \mathcal{M} \to \mathbb{R}^+$ by $d_M(\vec{x}, \vec{y}) := \inf_{\substack{path \vec{p}: [0,1] \to M \\ with \vec{p}(0) = \vec{x} \\ and \vec{p}(1) = \vec{y}}} \int_0^1 \|\vec{p}'(t)\|_2 dt$ (i.e., the shortest distance from \vec{x} to \vec{y} on M)

1.2 Homework

Show that $\{\vec{z} \in \mathbb{R}^D, \|\vec{z}\|_0 = d\} \subset \mathbb{R}^D$ is a *d*-dimensional manifold by constructing an atlas.

References

- Partha Niyogi, Stephen Smale, Shmuel Weinberger. Finding the Homology of Submanifolds with High Condence from Random Samples. J. Discrete Comput. Geom., 39(1): 419–441, 2008.
- [2] Mira Bernstein, Vin De Silva, John C. Langford, Joshua B. Tenenbaum. Graph Approximations to Geodesics on Embedded Manifolds. 2000.
- [3] Richard G. Baraniuk, Michael B. Wakin. Random Projections of Smooth Manifolds. J. Found. Comput. Math., 9(1): 51–77, 2009.
- [4] Mark A. Iwen, Mauro Maggioni. Approximation of Points on Low-Dimensional Manifolds Via Random Linear Projections. J. CoRR, 1204.3337, 2012.
- [5] Armin Eftekhari, Michael B. Wakin. New Analysis of Manifold Embeddings and Signal Recovery from Compressive Measurements. J. CoRR, 1306.4748, 2013.