MTH 995-003: Intro to CS and Big Data

Spring 2014

Lecture 20 — Mar. 13, 2014

Inst. Mark Iwen

Scribe: Jun Zhang

1 Overview

In this lecture we will construct fast J-L embeddings via BOS RIP matrices, and then use them to quickly solve overdetermined least-squares problems.

2 A Fast J-L Embedding Matrix

- We choose a BOS with K = 1, D = [N], and $\phi_{\omega}(t) = e^{-2\pi i (t-1)(\omega-1)/N}$, for all $t, \omega \in [N]$. Then,

 $\Phi = \{\phi_1, \cdots, \phi_N\}$

is a BOS, w.r.t. the uniform discrete probability measure ν .

- We construct a random sampling matrix with entries $\tilde{F}_{l,\omega} := \frac{1}{\sqrt{m}} \phi_{\omega}(l) = \frac{1}{\sqrt{m}} e^{-2\pi i (t-1)(\omega-1)/N}$, for all $\omega \in [N]$, and $l \in S$, where |S| = m is a set of random rows from the full DFT matrix. That is, we randomly select *m* rows independently from a DFT matrix according to ν (i.e., uniformly selecting).

- Theorem 1 from Lecture 19 tells us that \tilde{F} will have $\varepsilon_{2k}(\tilde{F}) \leq \varepsilon/4$ for any chosen $p, \varepsilon \in (0, 1)$ and integers $M \geq k \geq 16 \ln \left(\frac{4M}{1-p}\right)$ with probability $\geq 1 - N^{-\ln^3 N}$, provided that $m \geq \frac{\tilde{C}}{\varepsilon^2} k \ln^4 N$. Here, \tilde{C} is universal constant.

- Form a diagonal random matrix, $D \in \mathbb{R}^{N \times N}$, with ± 1 on the diagonal, each with probility 1/2:

$$D_{ii} = \begin{cases} 1, & \text{with prob. } \frac{1}{2} \\ -1, & \text{with prob. } \frac{1}{2} \end{cases},$$
(1)

– Theorem 3 from Lecture 16 now tells us that $\tilde{F}D \in \mathbb{C}^{m \times N}$ will be a strict J-L embedding for any arbitrary set $P \subseteq \mathbb{R}^N$ having cardinality $|P| \leq M$ with probability $\geq p - N^{-\ln^3 N}$, provided that $m \geq \frac{C'}{\varepsilon^2} ln(\frac{4M}{1-p}) \ln^4 N$. Here C' is an absolute constant.

Theorem 1. Let $P \subseteq \mathbb{R}^N$ have $|P| \leq M$, and $p, \varepsilon \in (0, 1)$. Form $\tilde{F}D \in \mathbb{C}^{m \times N}$ as above. Then,

$$(1-\varepsilon)||\vec{x}||_2^2 \le ||\tilde{F}D\vec{x}||_2^2 \le (1+\varepsilon)||\vec{x}||_2^2,$$

with hold for all $\vec{x} \in P$ with probability at least $p - N^{-\ln^3 N}$, provided that $\tilde{F}D$ has at least $m = \frac{C'}{\varepsilon^2} \ln(\frac{4M}{1-p}) \ln^4 N$ rows. Here C' is a universal constant.

– Note that $\tilde{F}D \in \mathbb{C}^{m \times N}$ has a fast matrix-vector multiply, which is the whole point... To computer $\tilde{F}D\vec{x}$ we can:

- Computer $D\vec{x}$ in O(N) multiplies.
- Take the DFT of $D\vec{x}$ with the FFT in $O((N \log N)$ -operations

So $\tilde{F}D$ has an $O(N \log N)$ matrix-vector multiply!

3 The Overdetermined Least Squares Problem [1]

Compute

$$\vec{y}_{\min} := \arg\min_{\vec{x} \in \mathbb{R}^n} \|A\vec{x} - \vec{b}\|_{\mathcal{H}}$$

for $A \in \mathbb{C}^{N \times n}$, $N \gg n$, and $\vec{b} \in \mathbb{C}^N$.

Standard deterministic solution approaches (e.g., via the QR-decomposition) use $O(Nn^2)$ operations.

If $n \leq N$ are both large, we want to solve this faster.

4 A Randomized Algorithm for Solving the Problem

Theorem 2. There exists a universal constant $\bar{C} \in \mathbb{R}^+$ such that a fast J-L embedding matrix $\tilde{F}D \in \mathbb{C}^{m \times N}$, with $m = \bar{C}(n+1) \ln \left(\frac{33}{2n+2\sqrt{(1-p)/8}}\right) \ln^4 N$ rows, will satisfy

$$\frac{1}{2}||A\vec{y} - \vec{b}||_2 \le ||\tilde{F}DA\vec{y} - \tilde{F}D\vec{b}||_2 \le \frac{3}{2}||A\vec{y} - \vec{b}||_2,$$

for all $\vec{y} \in \mathbb{R}^n$, with probability at least $p - N^{-\ln^3 N}$.

- Let

$$\vec{y}_{\min} := \arg\min_{\vec{x} \in \mathbb{R}^n} ||\tilde{F}D(A\vec{x} - \vec{b})||_2.$$

If Theorem 2 holds we have that

$$\frac{1}{2}||A\vec{y}_{\min} - \vec{b}||_2 \le ||\tilde{F}D(A\vec{y}_{\min} - \vec{b})||_2 \le ||\tilde{F}D(A\vec{y}_{\min} - \vec{b})||_2 \le \frac{3}{2}||A\vec{y}_{\min} - \vec{b}||_2.$$

Therefore, $||A\vec{y}_{\min} - \vec{b}||_2 \leq 3||A\vec{y}_{\min} - \vec{b}||_2$. This implies that \vec{y}'_{\min} is a decent approximation to the optimal solution $\vec{y}_{\min}!$

– The computational cost of computing \vec{y}'_{\min} is:

- 1. Computing $\tilde{F}DA$ and $\tilde{F}D\vec{b}$ takes $O(nN\log N)$ -time, using the FFT.
- 2. Solving for \vec{y}'_{\min} takes $O(mn^2)$ operations (e.g., via the QR-decomposition).

The total running time is $O\left(nN\log(N) + n^3\ln\left(\frac{1}{2n+\sqrt[2]{1-p}}\right)\ln^4 N\right)$.

- If $n = \Theta(\sqrt{N})$, and p is considered at constant, the deterministic method takes $O(N^2)$ -operations, while the randomized approach takes $O(N^{1.5} \log^4 N)$ -operations. This is a clear improvement when N is large.

Proof of Theorem 2: Let $\vec{a}_j \in \mathbb{R}^N$ be the j^{th} column of A. Consider the subspace $S := \text{span}\{\vec{a}_1, \cdots, \vec{a}_n, \vec{b}\}$.

-S is (n + 1)-dimensional subspace $\subset \mathbb{C}^N$. The unit ball B in S is isomorphic to the unit ball in \mathbb{R}^{2n+2} . Thus, $C_{\varepsilon/8}(B) \leq (1 + 16/\varepsilon)^{2n+2}$ by Lemma 2 in Lecture 14.

-Apply the proof of Lemma 3 in Lecture 14 (subspace embedding) to strictly embed S with $\tilde{F}D$, setting $\varepsilon = \frac{1}{2}$. Theorem 1 above guarantees that $\tilde{F}D$ will embed B with high probability, etc.. \Box

– Note: Theorem 2 is only useful in practice if $\tilde{F}DA$ is about as well conditioned as A is. This comment requires us to recall the definition of the *condition number* of a matrix...

- Consider the SVD of
$$A, A = U \begin{pmatrix} \sigma_1(A) & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \sigma_n(A) \end{pmatrix} V^*,$$

where $U \in \mathbb{C}^{N \times N}$, $V^* \in \mathbb{C}^{n \times n}$. Let \vec{v}_j be the $j^t h$ column of V.

- We know that $\sigma_n(A) := \inf_{||\vec{x}||=1} ||A\vec{x}||_2 = ||A\vec{v}_n||_2$, and $\sigma_1(A) = \sup_{||\vec{x}||=1} ||A\vec{x}||_2 = ||A\vec{v}_1||_2$.

Definition 1. The condition number of $A \in \mathbb{R}^{N \times n}$ is $\kappa(A) := \frac{\sigma_1(A)}{\sigma_n(A)}$.

– The proof of Theorem 2 also implies that $\tilde{F}DA$ is about as well conditioned as A was in the first place! If $\tilde{\vec{v}}_j$ is the j^{th} -right singular vector of $\tilde{F}DA$ we can see that

$$\frac{\sigma_n(A)}{2} = \frac{\|A\vec{v}_n\|_2}{2} \le \frac{\|A\vec{v}_n\|_2}{2} \le \|\tilde{F}DA\tilde{\vec{v}}_n\|_2 = \sigma_n(\tilde{F}DA)$$
(2)
$$\le \sigma_1(\tilde{F}DA) = \|\tilde{F}DA\tilde{\vec{v}}_1\|_2 \le \frac{3}{2}\|A\tilde{\vec{v}}_1\|_2 \le \frac{3}{2}\sigma_1(A).$$
(3)

Thus, $\kappa(\tilde{F}DA) \leq 3\kappa(A)$.

– Reference [1] notes that one can use a pre-conditioner for $\tilde{F}DA$ to quickly construct a preconditioner for A. We can then boost relative accuracy from 3 to ε in $O(\log(\frac{1}{\varepsilon}))$ steps of a preconditioned conjugate gradient method (see [1] for more info.).

References

[1] Vladimir Rokhlin and Mark Tygert. A fast randomized algorithm for overdetermined linear least-squares regression. Physical Sciences - Applied Mathematics, 13212–13217, 2008.