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1 Overview

In this lecture we will construct fast J-L embeddings via BOS RIP matrices, and then use them to
quickly solve overdetermined least-squares problems.

2 A Fast J-L Embedding Matrix

– We choose a BOS with K = 1, D = [N ], and φω(t) = e−2πi(t−1)(ω−1)/N , for all t, ω ∈ [N ]. Then,

Φ = {φ1, · · · , φN}

is a BOS, w.r.t. the uniform discrete probability measure ν.

– We construct a random sampling matrix with entries F̃l,ω := 1√
m
φω(l) = 1√

m
e−2πi(t−1)(ω−1)/N , for

all ω ∈ [N ], and l ∈ S, where |S| = m is a set of random rows from the full DFT matrix. That is, we
randomly select m rows independently from a DFT matrix according to ν (i.e., uniformly selecting).

– Theorem 1 from Lecture 19 tells us that F̃ will have ε2k(F̃ ) ≤ ε/4 for any chosen p, ε ∈ (0, 1)

and integers M ≥ k ≥ 16 ln
(

4M
1−p

)
with probability ≥ 1 −N− ln3N , provided that m ≥ C̃

ε2
k ln4N .

Here, C̃ is universal constant.

– Form a diagonal random matrix, D ∈ RN×N , with ±1 on the diagonal, each with probility 1/2:

Dii =

{
1, with prob. 1

2
−1, with prob. 1

2

, (1)

– Theorem 3 from Lecture 16 now tells us that F̃D ∈ Cm×N will be a strict J-L embedding for any
arbitrary set P ⊆ RN having cardinality |P | ≤ M with probability ≥ p − N− ln3N , provided that
m ≥ C′

ε2
ln( 4M

1−p) ln4N . Here C ′ is an absolute constant.

Theorem 1. Let P ⊆ RN have |P | ≤M , and p, ε ∈ (0, 1). Form F̃D ∈ Cm×N as above. Then,

(1− ε)||~x||22 ≤ ||F̃D~x||22 ≤ (1 + ε)||~x||22,

with hold for all ~x ∈ P with probability at least p − N− ln3N , provided that F̃D has at least m =
C′

ε2
ln( 4M

1−p) ln4N rows. Here C ′ is a universal constant.
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Proof: Follows from the argument above.

– Note that F̃D ∈ Cm×N has a fast matrix-vector multiply, which is the whole point...

To computer F̃D~x we can:

• Computer D~x in O(N) multiplies.

• Take the DFT of D~x with the FFT in O((N logN)-operations

So F̃D has an O(N logN) matrix-vector multiply!

3 The Overdetermined Least Squares Problem [1]

Compute
~ymin := arg min~x∈Rn‖A~x−~b‖,

for A ∈ CN×n, N � n, and ~b ∈ CN .

Standard deterministic solution approaches (e.g., via the QR-decomposition) use O(Nn2) opera-
tions.

If n ≤ N are both large, we want to solve this faster.

4 A Randomized Algorithm for Solving the Problem

Theorem 2. There exists a universal constant C̄ ∈ R+ such that a fast J-L embedding matrix

F̃D ∈ Cm×N , with m = C̄(n+ 1) ln

(
33

2n+2
√

(1−p)/8

)
ln4N rows, will satisfy

1

2
||A~y −~b||2 ≤ ||F̃DA~y − F̃D~b||2 ≤

3

2
||A~y −~b||2,

for all ~y ∈ Rn, with probability at least p−N− ln3N .

—————————-
– Let

~y
′
min := arg min~x∈Rn ||F̃D(A~x−~b)||2.

If Theorem 2 holds we have that

1

2
||A~y′

min −~b||2 ≤ ||F̃D(A~y
′
min −~b)||2 ≤ ||F̃D(A~ymin −~b)||2 ≤

3

2
||A~ymin −~b||2.

Therefore, ||A~y′
min −~b||2 ≤ 3||A~ymin −~b||2. This implies that ~y

′
min is a decent approximation to the

optimal solution ~ymin!

– The computational cost of computing ~y
′
min is:
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1. Computing F̃DA and F̃D~b takes O(nN logN)-time, using the FFT.

2. Solving for ~y
′
min takes O(mn2) operations (e.g., via the QR-decomposition).

The total running time is O
(
nN log(N) + n3 ln

(
1

2n+2√1−p

)
ln4N

)
.

– If n = Θ(
√
N), and p is considered at constant, the deterministic method takes O(N2)-operations,

while the randomized approach takes O(N1.5 log4N)-operations. This is a clear improvement when
N is large.
—————————-

Proof of Theorem 2: Let ~aj ∈ RN be the jth column ofA. Consider the subspace S := span{~a1, · · · ,~an,~b}.

–S is (n + 1)-dimensional subspace ⊂ CN . The unit ball B in S is isomorphic to the unit ball in
R2n+2. Thus, Cε/8(B) ≤ (1 + 16/ε)2n+2 by Lemma 2 in Lecture 14.

–Apply the proof of Lemma 3 in Lecture 14 (subspace embedding) to strictly embed S with F̃D,
setting ε = 1

2 . Theorem 1 above guarantees that F̃D will embed B with high probability, etc..

– Note: Theorem 2 is only useful in practice if F̃DA is about as well conditioned as A is. This
comment requires us to recall the definition of the condition number of a matrix...

– Consider the SVD of A, A = U

σ1(A) · · · 0
...

. . .
...

0 · · · σn(A)

V ∗,

where U ∈ CN×N , V ∗ ∈ Cn×n. Let ~vj be the jth column of V .

– We know that σn(A) := inf ||~x||=1 ||A~x||2 = ||A~vn||2, and σ1(A) = sup||~x||=1 ||A~x||2 = ||A~v1||2.

Definition 1. The condition number of A ∈ RN×n is κ(A) := σ1(A)
σn(A)

.

– The proof of Theorem 2 also implies that F̃DA is about as well conditioned as A was in the first
place! If ~̃vj is the jth-right singular vector of F̃DA we can see that

σn(A)

2
=
‖A~vn‖2

2
≤ ‖A~̃vn‖2

2
≤ ‖F̃DA~̃vn‖2 = σn(F̃DA) (2)

≤ σ1(F̃DA) = ‖F̃DA~̃v1‖2 ≤
3

2
‖A~̃v1‖2 ≤

3

2
σ1(A). (3)

Thus, κ(F̃DA) ≤ 3κ(A).
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– Reference [1] notes that one can use a pre-conditioner for F̃DA to quickly construct a pre-
conditioner for A. We can then boost relative accuracy from 3 to ε in O(log(1ε )) steps of a pre-
conditioned conjugate gradient method (see [1] for more info.).

References

[1] Vladimir Rokhlin and Mark Tygert. A fast randomized algorithm for overdetermined linear
least-squares regression. Physical Sciences - Applied Mathematics, 13212–13217, 2008.

4


