Lecture 20 - Mar. 13, 2014
Inst. Mark Iwen
Scribe: Jun Zhang

1 Overview

In this lecture we will construct fast J-L embeddings via BOS RIP matrices, and then use them to quickly solve overdetermined least-squares problems.

2 A Fast J-L Embedding Matrix

- We choose a BOS with $K=1, D=[N]$, and $\phi_{\omega}(t)=e^{-2 \pi i(t-1)(\omega-1) / N}$, for all $t, \omega \in[N]$. Then,

$$
\Phi=\left\{\phi_{1}, \cdots, \phi_{N}\right\}
$$

is a BOS, w.r.t. the uniform discrete probability measure ν.

- We construct a random sampling matrix with entries $\tilde{F}_{l, \omega}:=\frac{1}{\sqrt{m}} \phi_{\omega}(l)=\frac{1}{\sqrt{m}} e^{-2 \pi i(t-1)(\omega-1) / N}$, for all $\omega \in[N]$, and $l \in S$, where $|S|=m$ is a set of random rows from the full DFT matrix. That is, we randomly select m rows independently from a DFT matrix according to ν (i.e., uniformly selecting).
- Theorem 1 from Lecture 19 tells us that \tilde{F} will have $\varepsilon_{2 k}(\tilde{F}) \leq \varepsilon / 4$ for any chosen $p, \varepsilon \in(0,1)$ and integers $M \geq k \geq 16 \ln \left(\frac{4 M}{1-p}\right)$ with probability $\geq 1-N^{-\ln ^{3} N}$, provided that $m \geq \frac{\tilde{C}}{\varepsilon^{2}} k \ln ^{4} N$. Here, \tilde{C} is universal constant.
- Form a diagonal random matrix, $D \in \mathbb{R}^{N \times N}$, with ± 1 on the diagonal, each with probility $1 / 2$:

$$
D_{i i}= \begin{cases}1, & \text { with prob. } \frac{1}{2} \tag{1}\\ -1, & \text { with prob. } \frac{1}{2}\end{cases}
$$

- Theorem 3 from Lecture 16 now tells us that $\tilde{F} D \in \mathbb{C}^{m \times N}$ will be a strict J-L embedding for any arbitrary set $P \subseteq \mathbb{R}^{N}$ having cardinality $|P| \leq M$ with probability $\geq p-N^{-\ln ^{3} N}$, provided that $m \geq \frac{C^{\prime}}{\varepsilon^{2}} \ln \left(\frac{4 M}{1-p}\right) \ln ^{4} N$. Here C^{\prime} is an absolute constant.

Theorem 1. Let $P \subseteq \mathbb{R}^{N}$ have $|P| \leq M$, and $p, \varepsilon \in(0,1)$. Form $\tilde{F} D \in \mathbb{C}^{m \times N}$ as above. Then,

$$
(1-\varepsilon)\|\vec{x}\|_{2}^{2} \leq\|\tilde{F} D \vec{x}\|_{2}^{2} \leq(1+\varepsilon)\|\vec{x}\|_{2}^{2},
$$

with hold for all $\vec{x} \in P$ with probability at least $p-N^{-\ln ^{3} N}$, provided that $\tilde{F} D$ has at least $m=$ $\frac{C^{\prime}}{\varepsilon^{2}} \ln \left(\frac{4 M}{1-p}\right) \ln ^{4} N$ rows. Here C^{\prime} is a universal constant.

Proof: Follows from the argument above.

- Note that $\tilde{F} D \in \mathbb{C}^{m \times N}$ has a fast matrix-vector multiply, which is the whole point...

To computer $\tilde{F} D \vec{x}$ we can:

- Computer $D \vec{x}$ in $O(N)$ multiplies.
- Take the DFT of $D \vec{x}$ with the FFT in $O((N \log N)$-operations

So $\tilde{F} D$ has an $O(N \log N)$ matrix-vector multiply!

3 The Overdetermined Least Squares Problem [1]

Compute

$$
\vec{y}_{\text {min }}:=\arg \min _{\vec{x} \in \mathbb{R}^{n}}\|A \vec{x}-\vec{b}\|,
$$

for $A \in \mathbb{C}^{N \times n}, N \gg n$, and $\vec{b} \in \mathbb{C}^{N}$.
Standard deterministic solution approaches (e.g., via the QR-decomposition) use $O\left(N n^{2}\right)$ operations.

If $n \leq N$ are both large, we want to solve this faster.

4 A Randomized Algorithm for Solving the Problem

Theorem 2. There exists a universal constant $\bar{C} \in \mathbb{R}^{+}$such that a fast J-L embedding matrix $\tilde{F} D \in \mathbb{C}^{m \times N}$, with $m=\bar{C}(n+1) \ln \left(\frac{33}{\sqrt[2 n+2]{(1-p) / 8}}\right) \ln ^{4} N$ rows, will satisfy

$$
\frac{1}{2}\|A \vec{y}-\vec{b}\|_{2} \leq\|\tilde{F} D A \vec{y}-\tilde{F} D \vec{b}\|_{2} \leq \frac{3}{2}\|A \vec{y}-\vec{b}\|_{2}
$$

for all $\vec{y} \in \mathbb{R}^{n}$, with probability at least $p-N^{-\ln ^{3} N}$.

- Let

$$
\vec{y}_{\min }^{\prime}:=\arg \min _{\vec{x} \in \mathbb{R}^{n}}\|\tilde{F} D(A \vec{x}-\vec{b})\|_{2} .
$$

If Theorem 2 holds we have that

$$
\frac{1}{2}\left\|A \vec{y}_{\min }^{\prime}-\vec{b}\right\|_{2} \leq\left\|\tilde{F} D\left(A \vec{y}_{\min }^{\prime}-\vec{b}\right)\right\|_{2} \leq\left\|\tilde{F} D\left(A \vec{y}_{\min }-\vec{b}\right)\right\|_{2} \leq \frac{3}{2}\left\|A \vec{y}_{\min }-\vec{b}\right\|_{2}
$$

Therefore, $\left\|A \vec{y}_{\text {min }}^{\prime}-\vec{b}\right\|_{2} \leq 3\left\|A \vec{y}_{\text {min }}-\vec{b}\right\|_{2}$. This implies that $\vec{y}_{\text {min }}^{\prime}$ is a decent approximation to the optimal solution $\vec{y}_{\text {min }}$!

The computational cost of computing $\vec{y}_{\text {min }}$ is:

1. Computing $\tilde{F} D A$ and $\tilde{F} D \vec{b}$ takes $O(n N \log N)$-time, using the FFT.
2. Solving for $\vec{y}_{\min }^{\prime}$ takes $O\left(m n^{2}\right)$ operations (e.g., via the QR -decomposition).

The total running time is $O\left(n N \log (N)+n^{3} \ln \left(\frac{1}{\sqrt[2 n+2]{1-p}}\right) \ln ^{4} N\right)$.

- If $n=\Theta(\sqrt{N})$, and p is considered at constant, the deterministic method takes $O\left(N^{2}\right)$-operations, while the randomized approach takes $O\left(N^{1.5} \log ^{4} N\right)$-operations. This is a clear improvement when N is large.

Proof of Theorem 2: Let $\vec{a}_{j} \in \mathbb{R}^{N}$ be the $j^{\text {th }}$ column of A. Consider the subspace $S:=\operatorname{span}\left\{\vec{a}_{1}, \cdots, \vec{a}_{n}, \vec{b}\right\}$.
$-S$ is $(n+1)$-dimensional subspace $\subset \mathbb{C}^{N}$. The unit ball B in S is isomorphic to the unit ball in $\mathbb{R}^{2 n+2}$. Thus, $C_{\varepsilon / 8}(B) \leq(1+16 / \varepsilon)^{2 n+2}$ by Lemma 2 in Lecture 14 .
-Apply the proof of Lemma 3 in Lecture 14 (subspace embedding) to strictly embed S with $\tilde{F} D$, setting $\varepsilon=\frac{1}{2}$. Theorem 1 above guarantees that $\tilde{F} D$ will embed B with high probability, etc..

- Note: Theorem 2 is only useful in practice if $\tilde{F} D A$ is about as well conditioned as A is. This comment requires us to recall the definition of the condition number of a matrix...
- Consider the SVD of $A, A=U\left(\begin{array}{ccc}\sigma_{1}(A) & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \sigma_{n}(A)\end{array}\right) V^{*}$,
where $U \in \mathbb{C}^{N \times N}, V^{*} \in \mathbb{C}^{n \times n}$. Let \vec{v}_{j} be the $j^{t} h$ column of V.
- We know that $\sigma_{n}(A):=\inf _{\|\vec{x}\|=1}\|A \vec{x}\|_{2}=\left\|A \vec{v}_{n}\right\|_{2}$, and $\sigma_{1}(A)=\sup _{\|\vec{x}\|=1}\|A \vec{x}\|_{2}=\left\|A \overrightarrow{v_{1}}\right\|_{2}$.

Definition 1. The condition number of $A \in \mathbb{R}^{N \times n}$ is $\kappa(A):=\frac{\sigma_{1}(A)}{\sigma_{n}(A)}$.

- The proof of Theorem 2 also implies that $\tilde{F} \underset{\sim}{\sim} A$ is about as well conditioned as A was in the first place! If $\tilde{\vec{v}}_{j}$ is the $j^{\text {th }}$-right singular vector of $\tilde{F} D A$ we can see that

$$
\begin{align*}
\frac{\sigma_{n}(A)}{2}=\frac{\left\|A \vec{v}_{n}\right\|_{2}}{2} \leq \frac{\left\|A \tilde{\vec{v}}_{n}\right\|_{2}}{2} \leq\left\|\tilde{F} D A \tilde{\vec{v}}_{n}\right\|_{2} & =\sigma_{n}(\tilde{F} D A) \tag{2}\\
& \leq \sigma_{1}(\tilde{F} D A)=\left\|\tilde{F} D A \tilde{\vec{v}}_{1}\right\|_{2} \leq \frac{3}{2}\left\|A \tilde{\vec{v}}_{1}\right\|_{2} \leq \frac{3}{2} \sigma_{1}(A) \tag{3}
\end{align*}
$$

Thus, $\kappa(\tilde{F} D A) \leq 3 \kappa(A)$.

- Reference [1] notes that one can use a pre-conditioner for $\tilde{F} D A$ to quickly construct a preconditioner for A. We can then boost relative accuracy from 3 to ε in $O\left(\log \left(\frac{1}{\varepsilon}\right)\right)$ steps of a preconditioned conjugate gradient method (see [1] for more info.).

References

[1] Vladimir Rokhlin and Mark Tygert. A fast randomized algorithm for overdetermined linear least-squares regression. Physical Sciences - Applied Mathematics, 13212-13217, 2008.

