MTH 995: Spec Top Numer Anly and Oper Res

Spring 2015

Lecture John ellipsoid — Jan 22, 2015

Inst. Mark Iwen

Scribe: Minh Pham

1 Overview

In the last lecture we covered singular value decomposition (SVD) and principal component analysis (PCA).

In this lecture we will cover John Ellipsoid.

2 Definition

Def. Convex set: A set $K \subseteq \mathbb{R}^D$ is convex $\iff \forall \alpha \in [0, 1], \ \forall \vec{x}, \vec{y} \in K :$ $\alpha \vec{x} + (1 - \alpha) \vec{y} \in K$

3 Theorem

3.1 Theorem 1 (Fritz John)

Theorem 1. Let $K \subseteq \mathbb{R}^D$ be a convex compact set and K is symmetric about the origin (K = -K)Then there exists an ellipsoid $E \subseteq \mathbb{R}^D$ such that $: E \subseteq K \subseteq \sqrt{D}E$

Note: worst case happens when K is a cube

Proof: Assume WLOG that $spanK = \mathbb{R}^D$. Since E has non empty volume, we have : E = ABwhere A is a symmetric positive definite matrix in \mathbb{R}^{DxD} and B is the unit ball. From singular value decomposition we can write A as: $A = U\Sigma U^T$ $\Rightarrow AB = U\Sigma U^TB = U\Sigma B$ since U^T does not change the unit ball $\Rightarrow Volume \ of E = det A = \prod_{i=1}^D \lambda_i$

Lemma 1. The convex body K contains an ellipsoid of maximal volume

Proof: Let $L = \{A \in \mathbb{R}^{DxD} | AB \subseteq K\}$ We know the following: L is bounded L is closed (proof is homework) detA is continuous \Rightarrow There is a maximal ellipsoid. Q.E.D

Back to the proof of the theorem

Let E be a maximal volume ellipsoid in K E = AB, where A is a symmetric positive definite matrix in \mathbb{R}^{DxD} and B is the unit ball. Note that A is full rank. $\Rightarrow B \subseteq A^{-1}K$ and B is a maximal volume ellipsoid in $A^{-1}K$ Consider a 2-dimensional projection of $A^{-1}K$ Let $\vec{p} \in A^{-1}K \setminus B$ $\vec{p} = (a, 0)$ How large can $||\vec{p}||$ be? By bounding a from above we will get the factor \sqrt{D} . Let $A_{t,\lambda} = \begin{pmatrix} e^t & 0 & \dots & 0 \\ 0 & e^{-\lambda t} & \dots & 0 \end{pmatrix} \in \mathbb{R}^{DxD}$

$$A_{t,\lambda} = \begin{pmatrix} e & 0 & \dots & 0 \\ 0 & e^{-\lambda t} & \dots & 0 \\ \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & e^{-\lambda t} \end{pmatrix} \in \mathbb{R}^{DxD}$$

We want $Vol(A_{t,\lambda}) = e^{t(1-(D-1)\lambda)} > 1$ and $A_{t,\lambda}B \subseteq A^{-1}K$ to get a contradiction with B is the maximal volume ellipsoid Suppose $a > \sqrt{D}$ $\frac{1}{D-1} > \lambda > \frac{1}{a^2-1}$ Let L_1 be the tangent line from \vec{p} to the circle B Let L_2 be the tangent line from \vec{p} to the ellipse $A_{t,\lambda}B$ We want $A_{t,\lambda}B \subseteq A^{-1}K$ $\iff slope of L_1 < slope of L_2$ $\iff f(t) = -(a^2 - 1)e^{-2\lambda t} - e^{2t} + a^2 > 0$ Maximizing the function at $t^* = \frac{ln(\lambda(a^2 - 1))}{2(1 + \lambda)} > 0$ give us f(t) > 0Therefore, we have: $Vol(A_{t,\lambda}) = e^{t(1-(D-1)\lambda)} > 1$ by choice of λ $A_{t,\lambda}B \subseteq A^{-1}K$ by f(t) > 0 \Rightarrow B is not the maximal volume ellipsoid \Rightarrow contradiction $\Rightarrow a < \sqrt{D}$ $\Rightarrow B \subseteq A^{-1}K \subseteq \sqrt{D}B$ $\Rightarrow E \subseteq K \subseteq \sqrt{D}E$

3.2 Theorem 2 (Fritz John)

Theorem 2. E is unique when K is compact \sqrt{D} factor is sharp (eg: the cube)

3.3 Theorem 3

Theorem 3. Let $K \subset \mathbb{R}^D$ be convex with Vol(K) > 0 (K may not be symmetric) Then there exits an ellipsoid E centered at $\vec{c} \in \mathbb{R}^D$ such that: $E \subseteq K \subseteq \vec{c} + D(E - \vec{c})$

3.4 Theorem 4

Theorem 4. *E* is unique when *K* is compact *D* cannot be decreased in general

4 Find best fit ellipsoid

Problem: Given $\{\vec{x_1}, ..., \vec{x_n}\} \subset \mathbb{R}^D$, fit an ellipsoid around them. Define ellipse as $E_A := \{\vec{x} \in \mathbb{R}^D | \vec{x}^T A \vec{x} \leq 1\}$ where A is positive definite and symmetric $A = U \begin{pmatrix} \lambda_1 & .. & 0 \\ .. & .. & .. \\ 0 & .. & \lambda_D \end{pmatrix} U^T$ Length of semi-axis of E_A : $\frac{1}{\lambda_1} \leq \frac{1}{\lambda_2} \leq .. \leq \frac{1}{\lambda_D}$ Homework : prove $Vol(E_A) = \sqrt{det A^{-1}}$ To compute E_A , we find $Min_{A \in \mathbb{R}^{D \times D}} - log(det A)$ *i.e.*, $det(A^{-1})$ subject to two constraint: $1.(x_j)^T A x_j \leq 1$ 2.A is symmetric and positive definite

5 Homework

Homework 1 (section 2.1):

Let $K \subseteq \mathbb{R}^D$ be a convex compact set and K is symmetric about the origin (K = -K) B be the unit ball $L = \{A \in \mathbb{R}^{DxD} | AB \subseteq K\}$ Prove that L is closed **Homework 2 (section 3):** Let $E_A := \{\vec{x} \in \mathbb{R}^D | \vec{x}^T A \vec{x} \leq 1\}$ Prove : $Vol(E_A) = \sqrt{detA^{-1}}$