Lecture John ellipsoid - Jan 22, 2015
Inst. Mark Iwen
Scribe: Minh Pham

## 1 Overview

In the last lecture we covered singular value decomposition (SVD) and principal component analysis (PCA).
In this lecture we will cover John Ellipsoid.

## 2 Definition

Def. Convex set: $A$ set $K \subseteq \mathbb{R}^{D}$ is convex
$\Longleftrightarrow \forall \alpha \in[0,1], \forall \vec{x}, \vec{y} \in K:$
$\alpha \vec{x}+(1-\alpha) \vec{y} \in K$

## 3 Theorem

### 3.1 Theorem 1 (Fritz John)

Theorem 1. Let $K \subseteq \mathbb{R}^{D}$ be a convex compact set and $K$ is symmetric about the origin ( $K=-K$ ) Then there exists an ellipsoid $E \subseteq \mathbb{R}^{D}$ such that $: E \subseteq K \subseteq \sqrt{D} E$

Note: worst case happens when $K$ is a cube
Proof: Assume WLOG that span $K=\mathbb{R}^{D}$.
Since E has non empty volume, we have :
$E=A B$
where A is a symmetric positive definite matrix in $\mathbb{R}^{D x D}$ and B is the unit ball.
From singular value decomposition we can write A as:
$A=U \Sigma U^{T}$
$\Rightarrow A B=U \Sigma U^{T} B=U \Sigma B$ since $U^{T}$ does not change the unit ball
$\Rightarrow V$ olume of $E=\operatorname{det} A=\prod_{i=1}^{D} \lambda_{i}$

Lemma 1. The convex body $K$ contains an ellipsoid of maximal volume

Proof:
Let $L=\left\{A \in \mathbb{R}^{D x D} \mid A B \subseteq K\right\}$
We know the following:
L is bounded
L is closed (proof is homework)
$\operatorname{det} A$ is continuous
$\Rightarrow$ There is a maximal ellipsoid. Q.E.D

Back to the proof of the theorem
Let E be a maximal volume ellipsoid in K
$\mathrm{E}=\mathrm{AB}$, where A is a symmetric positive definite matrix in $\mathbb{R}^{D x D}$ and B is the unit ball. Note that A is full rank.
$\Rightarrow B \subseteq A^{-1} K$ and B is a maximal volume ellipsoid in $A^{-1} K$
Consider a 2 -dimensional projection of $A^{-1} K$
Let $\vec{p} \in A^{-1} K \backslash B$
$\vec{p}=(a, 0)$
How large can $\|\vec{p}\|$ be? By bounding a from above we will get the factor $\sqrt{D}$.
Let

$$
A_{t, \lambda}=\left(\begin{array}{cccc}
e^{t} & 0 & . . & 0 \\
0 & e^{-\lambda t} & . . & 0 \\
. . & . . & . . & . . \\
0 & 0 & . . & e^{-\lambda t}
\end{array}\right) \in \mathbb{R}^{D x D}
$$

We want $\operatorname{Vol}\left(A_{t, \lambda}\right)=e^{t(1-(D-1) \lambda)}>1$ and $A_{t, \lambda} B \subseteq A^{-1} K$ to get a contradiction with $B$ is the maximal volume ellipsoid
Suppose $a>\sqrt{D}$
$\frac{1}{D-1}>\lambda>\frac{1}{a^{2}-1}$
Let $L_{1}$ be the tangent line from $\vec{p}$ to the circle B
Let $L_{2}$ be the tangent line from $\vec{p}$ to the ellipse $A_{t, \lambda} B$
We want $A_{t, \lambda} B \subseteq A^{-1} K$
$\Longleftrightarrow$ slope of $L_{1}<$ slope of $L_{2}$
$\Longleftrightarrow f(t)=-\left(a^{2}-1\right) e^{-2 \lambda t}-e^{2 t}+a^{2}>0$
Maximizing the function at $t^{*}=\frac{\ln \left(\lambda\left(a^{2}-1\right)\right)}{2(1+\lambda}>0$ give us $f(t)>0$
Therefore, we have:
$\operatorname{Vol}\left(A_{t, \lambda}\right)=e^{t(1-(D-1) \lambda)}>1$ by choice of $\lambda$
$A_{t, \lambda} B \subseteq A^{-1} K$ by $f(t)>0$
$\Rightarrow \mathrm{B}$ is not the maximal volume ellipsoid
$\Rightarrow$ contradiction
$\Rightarrow a<\sqrt{D}$
$\Rightarrow B \subseteq A^{-1} K \subseteq \sqrt{D} B$
$\Rightarrow E \subseteq K \subseteq \sqrt{D} E$
Q.E.D

### 3.2 Theorem 2 (Fritz John)

Theorem 2. $E$ is unique when $K$ is compact
$\sqrt{D}$ factor is sharp (eg: the cube)

### 3.3 Theorem 3

Theorem 3. Let $K \subset \mathbb{R}^{D}$ be convex with $\operatorname{Vol}(K)>0$ ( $K$ may not be symmetric)
Then there exits an ellipsoid $E$ centered at $\vec{c} \in \mathbb{R}^{D}$ such that: $E \subseteq K \subseteq \vec{c}+D(E-\vec{c})$

### 3.4 Theorem 4

Theorem 4. $E$ is unique when $K$ is compact
$D$ cannot be decreased in general

## 4 Find best fit ellipsoid

Problem: Given $\left\{\overrightarrow{x_{1}}, \ldots, \overrightarrow{x_{n}}\right\} \subset \mathbb{R}^{D}$, fit an ellipsoid around them.
Define ellipse as
$E_{A}:=\left\{\vec{x} \in \mathbb{R}^{D} \mid \vec{x}^{T} A \vec{x} \leq 1\right\}$
where A is positive definite and symmetric
$A=U\left(\begin{array}{ccc}\lambda_{1} & . & 0 \\ . . & . & . . \\ 0 & . . & \lambda_{D}\end{array}\right) U^{T}$
Length of semi-axis of $E_{A}$ :
$\frac{1}{\lambda_{1}} \leq \frac{1}{\lambda_{2}} \leq . . \leq \frac{1}{\lambda_{D}}$
Homework : prove $\operatorname{Vol}\left(E_{A}\right)=\sqrt{\operatorname{det} A^{-1}}$
To compute $E_{A}$, we find $\operatorname{Min}_{A \in \mathbb{R}^{D x D}}-\log (\operatorname{det} A)$
i.e., $\operatorname{det}\left(A^{-1}\right)$
subject to two constraint:

1. $\left(x_{j}\right)^{T} A x_{j} \leq 1$
2.A is symmetric and positive definite

## 5 Homework

## Homework 1 (section 2.1):

Let $K \subseteq \mathbb{R}^{D}$ be a convex compact set and K is symmetric about the origin ( $\mathrm{K}=-\mathrm{K}$ )
$B$ be the unit ball
$L=\left\{A \in \mathbb{R}^{D x D} \mid A B \subseteq K\right\}$
Prove that L is closed
Homework 2 (section 3):
Let $E_{A}:=\left\{\vec{x} \in \mathbb{R}^{D} \mid \vec{x}^{T} A \vec{x} \leq 1\right\}$
Prove: $\operatorname{Vol}\left(E_{A}\right)=\sqrt{\operatorname{det} A^{-1}}$

