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1 Bounded Orthonormal Systems(BONS) and the RIP

Let D ⊂ Rd, ν be a probability measure on D, and Φ = {φ1, φ2, · · · , φN} be an orthonormal set of
functions, φj : D → C, j ∈ [N ], with respect to ν. That is, suppose that∫

D
φj(~t)φk(~t) dν(~t) =

{
0 if j6=k
1 if j=k

.

Definition 1. We will call an ONS Φ a bounded ONS with constant K if

max
j∈[N ]

‖φj‖∞ := max
j∈[N ]

(
sup
~t∈D
|φj(~t)|

)
≤ K

HW:

• Problems one and two can be found in Lecture 15.

• 3.) Prove K ≥ 1 must hold;

• 4.) Do 12.1 in page 431;

• 5.) Do 12.2 in page 431.

1.1 Examples of Bounded ONS

Example 1. Trigonometric polynomials are BONS (with K = 1).
Let D = [0, 1] and set φω(t) := e2πiωt for any ω ∈ Z. Let ν be the uniform (Lebesgue measure) on
[0, 1], and restrict ω ∈ [N ] (for example).

Then |φω(t)| = 1 ∀ω, t⇒ Φ := {φ1, . . . , φN} is a BONS with K = 1.

Example 2. Consider DFT matrix F ∈ CN×N ,

Fl,k := 1√
N
e−2πi(l−1)(k−1)/N , ∀ l, k ∈ [N ]

Let ν be discrete uniform measure on [N ], s.t ν(B) = |B|/N , ∀B ⊂ [N ], and D = [N ]. Set
φω(t) :=

√
NFt,ω (i.e., our functions are the columns of F ). Once again, |φω(t)| = 1 ∀ω, t⇒ K = 1

works for our bound. And, the system is still orthonormal since

1



∫
D φω(t)φω′(t) dν(t) = 1

N

∑N
t=1 e

−2πi(ω−ω′)t/N = δ(ω, ω′)

Finally, the Fast Fourier Transform (FFT) allows any subset of F ’s rows to be multiplied by a
given vector in O(N logN) time.

Example 3. Any unitary matrix U ∈ CN×N can be represented as a Bounded ONS with φk(l) :=
Ul,k, and ν := the discrete uniform measure on [N]. The only difference from above is that we should

set K = max
l,k
|
√
N · Ul,k|.

Theorem 1 (Thm 12.31 from [1]). Let A ∈ Cm×N be a matrix formed by sampling m points,
~t1, · · · ,~tm ∈ D independently, w.r.t. ν for any given BOS Φ = {φ1, · · · , φN}, and then setting
Al,k := φk(~tl) for l ∈ [m], k ∈ [N ], l ∈ [m]. If, for ε ∈ (0, 1) and k ∈ [N ], we have

m ≥ (CK/ε2) · k · ln4N,

then with probability at least 1−N− ln3N the restricted isometry constant εk(Ã) ≤ ε for Ã = 1√
m
A.

The constant C > 0 is universal (i.e. independent of k,K,N, ε, . . . ).

1.2 Applications of Theorem 1

Application 1 Suppose that f(~t) =

N∑
j=1

xj ·φj(~t) for a BONS, Φ = {φ1, · · · , φN}. We assume (or

hope) that ~x = the coefficient vector is sparse, or compressible. That is, we hope that inf
‖z‖0≤k

‖~x−~z‖1
is small.

We can try to learn f by learning ~x as follows: We sample ~t1, · · · ,~tm from D according to ν, and
then use f(~t1), · · · , f(~tm) to recover ~x (and therefore f).

We have 
f(~t1)

f(~t2)
...

f(~tm)

 =


φ1(~t1) φ2(~t1) · · · φN (~t1)

φ1(~t2) φ2(~t2) · · · φN (~t2)
...

...
...

...

φ1(~tm) φ2(~tm) · · · φN (~tm)



x1
x2
...
xN

 .

That is, we have 
f(~t1)

f(~t2)
...

f(~tm)

 = A~x

where Aj,i := φi(~tj). Theorem 1 says that this A has the RIP, so we can interpolate f(~t1), · · · , f(~tm)
to learn f by

1 Taking ~t1, · · · ,~tm from D for m ≥ CK2·k·log4N
ε2

;
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2 Using BP to find the ~z with minimal l1 norm subject to A~x = A~z (Lecture 16 → this gives
us a good result).

Example 4 (Chebyshev Polynomials of the first kind). They are defined by T0(x) = 1; T1(x) = x;
T2(x) = 2x2 − 1; · · · ; Tn+1 = 2xTn(x) − Tn − 1(x). It is also true that Tj(x) = cos(j · arccos(x))
holds for all j.

Here we have D = [−1, 1], and ν(A) =
1

π

∫
A

1√
1− x2

dx, for all A ⊂ [−1, 1].

Thus, Chebyshev polynomials provide a BONS with Φ := {
√

2T1(x),
√

2T2(x), · · · ,
√

2Tn(x)}.

That is, we have φj(x) =
√

2 cos(j · arccos(x)) for all j ∈ [N ]. It is now easy to see that K =
√

2.

Since Chebyschev polynomials form a BONS, we can interpolate Chebyschev-sparse functions using
a small number of function samples!

Application 2 Recall from lecture 16, Theorem 3, that RIP matrices⇒ J-L embedding matrices:
If A has RIP, take D = diag(?, · · · , ?) with random ±1 on the diagonal, and then AD will serve as
a J-L embedding. Note that AD will now be fast to multiply if A is formed using the columns of
a DFT matrix. This leads to “fast JL-embedding” matrices. More on this next time...
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