1 Bounded Orthonormal Systems(BONS) and the RIP

Let $D \subset \mathbb{R}^{d}, \nu$ be a probability measure on D, and $\Phi=\left\{\phi_{1}, \phi_{2}, \cdots, \phi_{N}\right\}$ be an orthonormal set of functions, $\phi_{j}: D \rightarrow \mathbb{C}, j \in[N]$, with respect to ν. That is, suppose that

$$
\int_{D} \phi_{j}(\vec{t}) \overline{\phi_{k}(\vec{t})} d \nu(\vec{t})=\left\{\begin{array}{ll}
0 & \text { if } \mathrm{j} \neq \mathrm{k} \\
1 & \text { if } \mathrm{j}=\mathrm{k}
\end{array} .\right.
$$

Definition 1. We will call an ONS Φ a bounded ONS with constant K if

$$
\max _{j \in[N]}\left\|\phi_{j}\right\|_{\infty}:=\max _{j \in[N]}\left(\sup _{\vec{t} \in D}\left|\phi_{j}(\vec{t})\right|\right) \leq K
$$

HW:

- Problems one and two can be found in Lecture 15.
- 3.) Prove $K \geq 1$ must hold;
- 4.) Do 12.1 in page 431;
- 5.) Do 12.2 in page 431 .

1.1 Examples of Bounded ONS

Example 1. Trigonometric polynomials are BONS (with $K=1$).
Let $D=[0,1]$ and set $\phi_{\omega}(t):=e^{2 \pi i \omega t}$ for any $\omega \in \mathbb{Z}$. Let ν be the uniform (Lebesgue measure) on $[0,1]$, and restrict $\omega \in[N]$ (for example).

Then $\left|\phi_{\omega}(t)\right|=1 \quad \forall \omega, t \Rightarrow \Phi:=\left\{\phi_{1}, \ldots, \phi_{N}\right\}$ is a BONS with $K=1$.
Example 2. Consider DFT matrix $F \in \mathbb{C}^{N \times N}$,

$$
F_{l, k}:=\frac{1}{\sqrt{N}} e^{-2 \pi i(l-1)(k-1) / N}, \forall l, k \in[N]
$$

Let ν be discrete uniform measure on $[N]$, s.t $\nu(B)=|B| / N, \forall B \subset[N]$, and $D=[N]$. Set $\phi_{\omega}(t):=\sqrt{N} F_{t, \omega}$ (i.e., our functions are the columns of F). Once again, $\left|\phi_{\omega}(t)\right|=1 \quad \forall \omega, t \Rightarrow K=1$ works for our bound. And, the system is still orthonormal since

$$
\int_{D} \phi_{\omega}(t) \overline{\phi_{\omega^{\prime}}(t)} d \nu(t)=\frac{1}{N} \sum_{t=1}^{N} e^{-2 \pi i\left(\omega-\omega^{\prime}\right) t / N}=\delta\left(\omega, \omega^{\prime}\right)
$$

Finally, the Fast Fourier Transform (FFT) allows any subset of F's rows to be multiplied by a given vector in $O(N \log N)$ time.

Example 3. Any unitary matrix $U \in \mathbb{C}^{N \times N}$ can be represented as a Bounded ONS with $\phi_{k}(l):=$ $U_{l, k}$, and $\nu:=$ the discrete uniform measure on [N]. The only difference from above is that we should set $K=\max _{l, k}\left|\sqrt{N} \cdot U_{l, k}\right|$.
Theorem 1 (Thm 12.31 from [1]). Let $A \in \mathbb{C}^{m \times N}$ be a matrix formed by sampling m points, $\vec{t}_{1}, \cdots, \vec{t}_{m} \in D$ independently, w.r.t. ν for any given BOS $\Phi=\left\{\phi_{1}, \cdots, \phi_{N}\right\}$, and then setting $A_{l, k}:=\phi_{k}\left(\vec{t}_{l}\right)$ for $l \in[m], k \in[N], l \in[m]$. If, for $\varepsilon \in(0,1)$ and $k \in[N]$, we have

$$
m \geq\left(C K / \varepsilon^{2}\right) \cdot k \cdot \ln ^{4} N
$$

then with probability at least $1-N^{-\ln ^{3} N}$ the restricted isometry constant $\varepsilon_{k}(\tilde{A}) \leq \varepsilon$ for $\tilde{A}=\frac{1}{\sqrt{m}} A$. The constant $C>0$ is universal (i.e. independent of $k, K, N, \varepsilon, \ldots$).

1.2 Applications of Theorem 1

Application 1 Suppose that $f(\vec{t})=\sum_{j=1}^{N} x_{j} \cdot \phi_{j}(\vec{t})$ for a BONS, $\Phi=\left\{\phi_{1}, \cdots, \phi_{N}\right\}$. We assume (or hope) that $\vec{x}=$ the coefficient vector is sparse, or compressible. That is, we hope that $\inf _{\|z\|_{0} \leq k}\|\vec{x}-\vec{z}\|_{1}$ is small.

We can try to learn f by learning \vec{x} as follows: We sample $\vec{t}_{1}, \cdots, \vec{t}_{m}$ from D according to ν, and then use $f\left(\vec{t}_{1}\right), \cdots, f\left(\vec{t}_{m}\right)$ to recover \vec{x} (and therefore f).

We have

$$
\left(\begin{array}{c}
f\left(\vec{t}_{1}\right) \\
f\left(\vec{t}_{2}\right) \\
\vdots \\
f\left(\vec{t}_{m}\right)
\end{array}\right)=\left(\begin{array}{cccc}
\phi_{1}\left(\vec{t}_{1}\right) & \phi_{2}\left(\vec{t}_{1}\right) & \cdots & \phi_{N}\left(\vec{t}_{1}\right) \\
\phi_{1}\left(\vec{t}_{2}\right) & \phi_{2}\left(\vec{t}_{2}\right) & \cdots & \phi_{N}\left(\vec{t}_{2}\right) \\
\vdots & \vdots & \vdots & \vdots \\
\phi_{1}\left(\vec{t}_{m}\right) & \phi_{2}\left(\vec{t}_{m}\right) & \cdots & \phi_{N}\left(\vec{t}_{m}\right)
\end{array}\right)\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{N}
\end{array}\right) .
$$

That is, we have

$$
\left(\begin{array}{c}
f\left(\vec{t}_{1}\right) \\
f\left(\vec{t}_{2}\right) \\
\vdots \\
f\left(\overrightarrow{t_{m}}\right)
\end{array}\right)=A \vec{x}
$$

where $A_{j, i}:=\phi_{i}\left(\vec{t}_{j}\right)$. Theorem 1 says that this A has the RIP, so we can interpolate $f\left(\vec{t}_{1}\right), \cdots, f\left(\vec{t}_{m}\right)$ to learn f by

1 Taking $\vec{t}_{1}, \cdots, \vec{t}_{m}$ from D for $m \geq \frac{C K^{2} \cdot k \cdot \log ^{4} N}{\varepsilon^{2}}$;

2 Using BP to find the \vec{z} with minimal l_{1} norm subject to $A \vec{x}=A \vec{z}$ (Lecture $16 \rightarrow$ this gives us a good result).

Example 4 (Chebyshev Polynomials of the first kind). They are defined by $T_{0}(x)=1 ; T_{1}(x)=x$; $T_{2}(x)=2 x^{2}-1 ; \cdots ; T_{n+1}=2 x T_{n}(x)-T_{n}-1(x)$. It is also true that $T_{j}(x)=\cos (j \cdot \arccos (x))$ holds for all j.

Here we have $D=[-1,1]$, and $\nu(A)=\frac{1}{\pi} \int_{A} \frac{1}{\sqrt{1-x^{2}}} d x$, for all $A \subset[-1,1]$.
Thus, Chebyshev polynomials provide a BONS with $\Phi:=\left\{\sqrt{2} T_{1}(x), \sqrt{2} T_{2}(x), \cdots, \sqrt{2} T_{n}(x)\right\}$.

That is, we have $\phi_{j}(x)=\sqrt{2} \cos (j \cdot \arccos (x))$ for all $j \in[N]$. It is now easy to see that $K=\sqrt{2}$.

Since Chebyschev polynomials form a BONS, we can interpolate Chebyschev-sparse functions using a small number of function samples!

Application 2 Recall from lecture 16, Theorem 3, that RIP matrices \Rightarrow J-L embedding matrices: If A has RIP, take $D=\operatorname{diag}(\star, \cdots, \star)$ with random ± 1 on the diagonal, and then $A D$ will serve as a J-L embedding. Note that $A D$ will now be fast to multiply if A is formed using the columns of a DFT matrix. This leads to "fast JL-embedding" matrices. More on this next time...

References

[1] Simon Foucart, Holger Rauhut. A Mathematical Introduction to Compressive Sensing. Birkhauser Basel, 2013

