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1 Overview

In the last lecture we discussed the RIP property, null space property of order k. In this lecture,
we recall the topic of null space, and basis pursuit for recovery of sparse vectors.

2 Main Contents

Lemma 1. Given S ⊆ [N ] and ~x, ~z ∈ CN , we have∥∥(~x− ~z)S
∥∥
1
≤ ‖~z‖1 − ‖~x‖1 + ‖(~x− ~z)S‖1 + 2

∥∥~xS∥∥1 . (1)

Proof: Applying the triangle equality twice we get that

‖~x‖1 =
∥∥~xS∥∥1 + ‖~xS‖1 ≤

∥∥~xS∥∥1 + ‖(~x− ~z)S‖1 + ‖~zS‖1 , (2)

and ∥∥(~x− ~z)S
∥∥
1
≤
∥∥~xS∥∥1 +

∥∥~zS∥∥1 . (3)

Adding these two inequalities and rearranging gives the result.

Theorem 1. Let ~x ∈ CN . Suppose that ∃ρ ∈ (0, 1) s.t. A ∈ Cm×N has the null space property

‖~vS‖1 ≤ ρ
∥∥~vS∥∥1 ($)

∀~v ∈ ker(A) and ∀S ⊂ [N ] with |S| ≤ k. Then, any vector ~z# ∈ CN satisfying∥∥∥~z#∥∥∥
1

is minimal over all ~z ∈ CN with A~z = A~x (BP )

will approximate ~x near optimally in the sense that∥∥∥~x− ~z#∥∥∥
1
≤ 2(1 + ρ)

1− ρ
·
(

inf
~z∈CN , ‖~z‖0≤k

‖~x− ~z‖1
)
. (4)

———————————————————————————————————————————

Review: Some results from Lecture 15.

1. Lecture 15, theorem 1.
Subgaussian random matrices have the RIP of order k for ε. Thus, their RI constants are
small.
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2. Lecture 15, theorem 2.
The RIP of order k for ε will also have the null space property ($)

3. Theorem 1(today) tells us that a matrix with ($) will work with Basis Pursuit (BP) for the
purposes of compressive sensing.

4. Lecture 4 tells us that BP can be solved efficiently via linear programming

——————————————————————————————————————————–

Proof of Theorem 1 : Let S ⊆ [N ] be s.t. ‖~xS‖1 = inf
‖~z‖0≤k

‖(~x− ~z)‖1

Since ~z# (as defined above) satisfies A~z# = A~x, we have
(
~x− ~z#

)
∈ ker(A). Thus, by Lemma 1

∥∥∥(~x− ~z#)
S

∥∥∥
1
≤ ‖~z#‖1 − ‖~x‖1 +

∥∥∥(~x− ~z#)
S

∥∥∥
1

+ 2 ·
∥∥~xS∥∥1 (5)

Since
∥∥~z#∥∥

1
is minimal over all vectors satisfying the constraint A~z# = A~x, it implies that:

∥∥∥(~x− ~z#)
S

∥∥∥
1
≤
∥∥∥(~x− ~z#)

S

∥∥∥
1

+ 2 ·
∥∥~xS∥∥1 (6)

≤ ρ ·
∥∥∥(~x− ~z#)

S

∥∥∥
1

+ 2 ·
∥∥~xS∥∥1 by ($) (7)

This implies that

∥∥∥(~x− ~z#)
S

∥∥∥
1
≤ 2

1− ρ
∥∥~xS∥∥1 (8)

Thus,

∥∥∥(~x− ~z#)∥∥∥
1

=
∥∥∥(~x− ~z#)

S

∥∥∥
1

+
∥∥∥(~x− ~z#)

S

∥∥∥
1

(9)

≤ (1 + ρ)
∥∥∥(~x− ~z#)

S

∥∥∥
1

by ($) (10)

≤ 2(1 + ρ)

1− ρ
∥∥~xS∥∥1 (11)

The theorem now follows from our choice of S ⊆ [N ] above.

A better result

Theorem 2 (Theorem 6.12 in [1]). Suppose that A ∈ Cm×N satisfies ε2k(A) < 4√
41

. Then for any

~x ∈ CN and y ∈ Cm with ‖(A~x− ~y)‖2 ≤ ν, a solution ~z# of the modified BP problem:

min
~z∈CN

‖~z‖1s.t.‖(A~z − ~y)‖2 ≤ ν (12)
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will approximate the true solution ~x with errors:

∥∥∥(~x− ~z#)∥∥∥
1
≤ C ·

(
inf
‖~z‖0≤k

‖(~x− ~z)‖1
)

+D
√
k · ν (13)

∥∥∥(~x− ~z#)∥∥∥
2
≤ C√

k
·
(

inf
‖~z‖0≤k

‖(~x− ~z)‖1
)

+Dν (14)

where C,D are constants only only depend on ε2k(A).

The following will be useful later.

Lemma 2. Suppose that A ∈ Cm×N has kth R.I. constant εk(A) ∈ (0, 1). Then,

‖A~x‖2 ≤
√

1 + εk(A)

[
‖x‖1√
k

+ ‖x‖2
]

∀~x ∈ CN . (15)

As a result

σ1(A) ≤
√

1 + εk(A)

(√
N

k
+ 1

)
. (16)

Proof :

We have

‖A~x‖2 =

∥∥∥∥A(~xS0 + ~xS1 + ...+ ~xSbNk c

)∥∥∥∥
2

(17)

where |~xj1 | ≥ |~xj2 | ≥ ... ≥ |~xjN | and Sl = {jlk+1, ..., jlk+k} ∀l = 0, 1, ...,
⌊
N
k

⌋
.

Thus,

‖A~x‖2 ≤
bNk c∑
l=0

‖A~xSl
‖2 (the triangle inequality) (18)

≤
√

1 + εk(A)

b
N
k c∑

l=0

‖~xSl
‖2

 (by definition of εk(A)) (19)

≤
√

1 + εk(A)

‖~xS0‖2 +

bNk c∑
l=0

‖~xSl
‖1√
k

 (by Lemma 2 from Lecture 15) (20)

≤
√

1 + εk(A)

[
‖~x‖2 +

‖~x‖1√
k

]
. (21)
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We have seen in Lectures 14 and 15 that the Johnson-Lindenstrauss Lemma implies the Restricted
Isometry Property (RIP). It also turns out that the RIP implies the J-L Lemma (i.e., they are
“nearly equivalent” up to a loss in the parameters). We will use this result later as well.

Theorem 3 (Theorem 9.36 in [1]). Let P ⊆ RN have |P | = M . Suppose that A ∈ Rm×N has
ε2k(A) ≤ η/4 for some η, δ ∈ (0, 1) and k ≥ 16 · ln(4M/δ). Let ~ψ ∈ RN have i.i.d. Bernoulli entries
(taking on +1/− 1 with prob 0.5 each), then:

(1− η) ‖~x‖22 ≤
∥∥∥A ·Diag(~ψ) · ~x

∥∥∥2
2
≤ (1 + η) ‖~x‖22 (22)

∀~x ∈ P with prob. ≥ 1− δ.

Note: Diag(~ψ) ∈ RN×N is a diagonal matrix with the entries of ~ψ on its diagonal.

References

[1] Simon Foucart and Holger Rauhut. A Mathematical Introduction to Compressive Sensing.
Birkhauser Basel, 2013.

4


