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Lecture 16 — 02/27, 2014
Inst. Mark ITwen Scribe: Chinh Dang

1 Overview

In the last lecture we discussed the RIP property, null space property of order k. In this lecture,
we recall the topic of null space, and basis pursuit for recovery of sparse vectors.

2 Main Contents

Lemma 1. Given S C [N] and %,Z € CV, we have

1@ = 25, < 12 = 12l + 1@ = 2)glly +2 || F5]), - (1)

Proof: Applying the triangle equality twice we get that

120, = |75, + 1Zslly < |75, + 1@ = 2)glly + 117515 (2)

and
1@ = sl < |1#sll;, +[IZs]]; - (3)
Adding these two inequalities and rearranging gives the result. O

Theorem 1. Let & € CN. Suppose that 3p € (0,1) s.t. A€ C™N has the null space property
loslly < pllogll, (8
V7 € ker(A) and VS C [N] with |S| < k. Then, any vector 2% € CN satisfying
HZ#HI is minimal over all Z € CN with AZ = A% (BP)
will approximate X near optimally in the sense that

2(1
f—E#H g(”)( inf Hf—EHl). (4)
1 1—=p ZeCN, |7 o<k

Review: Some results from Lecture 15.

1. Lecture 15, theorem 1.
Subgaussian random matrices have the RIP of order k for . Thus, their RI constants are
small.



2. Lecture 15, theorem 2.
The RIP of order k for € will also have the null space property ($)

3. Theorem 1(today) tells us that a matrix with ($) will work with Basis Pursuit (BP) for the
purposes of compressive sensing.

4. Lecture 4 tells us that BP can be solved efficiently via linear programming

Proof of Theorem 1: Let S C [N] be s.t. ||Zs]|; = | 1||nf . (= 2)||;
o<

Since % (as defined above) satisfies AZ# = AZ, we have (Z — %) € ker(A4). Thus, by Lemma 1

|7 )|, < =z + | (7 2#) ||, +2- 7], (5)

Since Hz_# Hl is minimal over all vectors satisfying the constraint AZ# = AZ, it implies that:

|(z-2#) |, <[ (7— ##) |, +2- lIssll, ©

<ol(a-=) roebasl w o »

This implies that

" 2 .

H(gv_g#>§H1 = l—pHﬂﬁgHl ®)

Thus,

g = ||(z— z# i o#
=) =G =)l + 1= =) . ©
<@+o)(z-2#), by ($) (10)
2(1+p)

< prngl (11)
The theorem now follows from our choice of S C [N] above. O

A better result

Theorem 2 (Theorem 6.12 in [1]). Suppose that A € C™*N satisfies eop(A) < \/%. Then for any

£eCV andy e C™ with ||(AZ — §)||, < v, a solution Z# of the modified BP problem:

min ||Z]];s.t.||(AZ — )|, < v 12
min [|7],5.41(A = P, < (12)



will approximate the true solution T with errors:

H(f_g#)‘h <C- < inf H(:E'—Z)h) +DVEk-v

I12llo<k
(=), = 5+ (ant, W20 ) + Do
27 VE \lzllo<k
where C, D are constants only only depend on eor(A).

The following will be useful later.

Lemma 2. Suppose that A € C™*N has k' R.I. constant e1,(A) € (0,1). Then,

. [E4IR ] SN
AT, < /1+¢er(A [ + || Vi e CY.

As a result

o1(A) <1+ e(A) ( %—&- 1) :
Proof:

We have

||Af||2 = HA (fgo =+ fsl “+ ...+ fs N >
LTJ 2

where |7}, | > |Z;,| > ... > |Zjy| and S; = {15 s Jikrn ) VI=0,1,..., L%J.

Thus,

I

| AZ||, < |AZg,||, (the triangle inequality)
=0

==
| E—

L5
< V1+4+er(A) Z |Zs,]l,| (by definition of £;(A))
1=0

(by Lemma 2 from Lecture 15)

5]
. T
< VIl [Jas,+ >
=0

< VIFad I, + 20 ].



O]

We have seen in Lectures 14 and 15 that the Johnson-Lindenstrauss Lemma implies the Restricted
Isometry Property (RIP). It also turns out that the RIP implies the J-L Lemma (i.e., they are
“nearly equivalent” up to a loss in the parameters). We will use this result later as well.

Theorem 3 (Theorem 9.36 in [1]). Let P C RY have |P| = M. Suppose that A € R™N has
eor(A) < n/4 for somen,d € (0,1) and k > 16-1n(4M/6). Let yp € RN have i.i.d. Bernoulli entries
(taking on +1/ — 1 with prob 0.5 each), then:

. 2
(=) |73 < |[4- Diag(d) - 7| < (1 +m) |73 (22)

Ve P with prob. > 1— 4.

-,

Note: Diag() € RV*Y is a diagonal matrix with the entries of 1; on its diagonal.
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