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1 The R.I.P. and Basis pursuit

Definition 1. A matrix A ∈ Rm×N satisfies the restricted isometry property of order k ∈ [N ] for
ε ∈ (0, 1) if

(1− ε)‖ ~x‖22 ≤ ‖A~x‖22 ≤ (1 + ε)‖~x‖22 (1)

for all vectors ~x ∈ RN with ‖~x‖0 ≤ k (at most k nonzero entries)

Theorem 1. let p, ε ∈ (0, 1)and A ∈ Rm×N with i.i.d mean 0, variance 1, subgaussian entries
(with parameter c), and choose

m ≥ 32c(16c+ 1)

(
√

1 + ε− 1)2
· k · ln

eN
(

1 + 16√
1+ε−1

)
k · k
√

(1− p)/2

 .

Then 1√
m
A will have RIP of order k for ε with probability at least p.

Proof: Do as Homework problem 1.

Definition 2. Let ~x ∈ RN . We let the support of ~x be

supp(~x) = The set of nonzero coordinates in ~x.

Example 1. If ~x =


100
0

100
0

, then supp(~x) = {1, 3}.

Definition 3. Let S ⊆ {1, 2, ..., N} = [N ], and ~x ∈ RN . Then, we let ~xS = ~x with all entries not
in S set to zero. That is,

(xS)j =

{
0, if j 6= S

xj , if j ∈ S
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Definition 4. Similarly, if A ∈ Rm×N , then AS := the sub-matrix of A consisting of the columns
of A indexed in S.

Example 2. ~x =


100
100
100
100

 and A is the 4× 4 identity, A = I4×4, and S = {2, 4},then ~xS =


0

100
0

100



and AS =


0 0
1 0
0 0
0 1

.

Example 3. ~xsupp(~x) = ~x ∀~x ∈ CN

Definition 5. Let A ∈ Cm×N . Then kth restricted isometry constant of A, εk(A), is

εk(A) := max
S⊆[N ],|S|≤k

σ1
(
A∗SAS − I|S|×|S|

)
= max

S⊆[N ],|S|≤k
max

{∣∣σ21(AS)− 1
∣∣ , ∣∣∣σ2|S|(AS)− 1

∣∣∣}.
Note: If A ∈ Rm×N has the RIP of order k for ε, then εk(A) ≤ ε. Theorem 1 above is simply a
means of bounding the restricted isometry constants of certain random matrices.

Any matrix with small RI constants will be useful for sparse approximation, as we will begin to see
next.

Lemma 1. Let ~u,~v ∈ CN be complex vectors s.t. ‖~u‖0 ≤ k, ‖~v‖0 ≤ t. If supp(~u) ∩ supp(~v) = ∅,
then

| < A~u,A~v > | ≤ εk+t(A) · ‖~u‖2 · ‖~v‖2.

Proof: Let S := supp(~u) ∪ supp(~v) so that |S| = t + k. Since ~u and ~v have disjoint supports, we
have < ~u,~v >= 0. Thus,

| < A~u,A~v > | = | < AS~uS , AS~vS > |
= | < AS~uS , AS~vS > − < ~uS , ~vS > |
= | < (A∗SAS − I)~uS , ~vS > |
≤ ‖(A∗SAS − I)‖ · ‖~uS‖2 · ‖~vS‖2 (by Hölder’s Inequality)

≤ εk+t(A) · ‖~uS‖2 · ‖~vS‖2.

Note: If ~x ∈ CN , [N ] = ∪b
N
k
c

j=0 Sj then ~x =
∑bN

k
c

j=0 ~xSj where Sj ∩ Sl = ∅ if l 6= j, and |Sj | ≤ k for all

j = 0, 1, . . . , bNk c.

Definition 6. For any ~x ∈ CN , we will let its coordinates be ordered by magnitude s.t.

|xi1 | ≥ |xi2 | ≥ .... ≥ |xiN |

and we will set S0 = {i1, i2, ..., ik} , and Sj = {i1+jk, i2+jk, ..., i(j+1)k} for all j ∈
[
bNk c

]
.

Lemma 2. If ~u ∈ CN and ~V ∈ CN satisfy

‖u‖∞ := max
i∈[N ]

|ui| ≤ min
j∈[N ]

|vj | (2)

then ‖~u‖2 ≤ ‖~v‖1√
N

.
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Proof: Homework 2.

Theorem 2. Suppose that ε2k(A) < 1
2 for some A ∈ Cm×N .Then

‖~vS‖1 ≤
ε2k(A)

1− 2ε2k(A)
‖~vS‖1 (3)

for all ~v ∈ ker(A)and ∀S ⊆ {1, 2, 3, ...., N} with |S| ≤ k.

Note: (3) holding as above is commonly referred to as the “null space property” with constant
ε2k(A)

1−2ε2k(A) . If A~v = 0 then ~v cannot be k-sparse.

Proof: Let S ⊂ [N ] with |S| ≤ k. If (3) holds for just S0 w.r.t. at given ~v it is enough since

‖~vS‖1 ≤ ‖~vS0‖1 ≤
ε2k(A)

1− 2ε2k(A)
‖~vS0
‖2 ≤

ε2k(A)

1− 2ε2k(A)
‖~vS‖2 (4)

Therefore, it suffices to establish (3) for S0 w.r.t. each ~v ∈ ker(A)

By definition of the Restricted Isometry (RI) constant, ε2k(A) ≥ εk(A). Thus

(1− ε2k(A))‖~vS0‖22 ≤ (1− εk(A))‖~vS0‖22 ≤ ‖A~vS0‖22, (5)

and so

‖ ~vS0‖22 ≤
1

1− ε2k(A)
‖A~vS0‖22 =

1

1− ε2k(A)
〈A~vS0 , A~vS0〉.

Since ~v ∈ ker(A), we have that A~vS0 = −
∑bN

k
c

j=1 AvSj . Thus, Lemma 1 implies that

‖~vS0‖22 ≤
1

1− ε2k(A)

∑
j≥1
〈A~vS0 ,−A~vSj 〉 ≤

ε2k(A)

1− ε2k(A)

∑
j≥1
‖~vS0‖2.‖~vSj‖2

and so we get that

‖~vS0‖ ≤
ε2k(A)

1− ε2k(A)

bN
k
c∑

j=1

‖~vSj‖2. (6)

Now, Lemma 2 tells us that ‖~vSj‖2 ≤
‖~vSj−1

‖1√
k

, ∀j ≥ 1. Thus,

‖~vS0‖2 ≤
1√
k
· ε2k(A)

1− ε2k(A)
· ‖~v‖1.

Now to finish, we note that Hölder’s Inequality implies that ‖~vS0‖1 ≤ ‖~vS0‖2 ·
√
k. Therefore, a

rearrangement of the last inequality will give us the desired result.

1.1 Homework Problems:- due March 21st (Tue.)

Homework 1: Prove theorem 1.
Homework 2: Prove lemma 2.
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