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1 The R.I.P. and Basis pursuit

Definition 1. A matriz A € R™*N satisfies the restricted isometry property of order k € [N] for
ec (0,1) if

(1=l 23 < [|AZ]3 < (1 + ¢)l|Z]3 (1)
for all vectors ¥ € RN with ||Z|jo < k (at most k nonzero entries)

Theorem 1. let p,e € (0,1)and A € R™*N with i.4.d mean 0, variance 1, subgaussian entries
(with parameter c), and choose

o B2e(lGe 1) 6A7@**¢527J
T (V1+e—1)? k- Y/ (1-p)/2

Then ﬁA will have RIP of order k for e with probability at least p.

Proof: Do as Homework problem 1. O
Definition 2. Let & € RN. We let the support of & be
supp(¥) = The set of nonzero coordinates in .
100

Example 1. If ¥ = , then supp(Z) = {1,3}.

0
100
0

Definition 3. Let S C {1,2,..., N} = [N], and ¥ € RN. Then, we let Ts = T with all entries not
i S set to zero. That is,

R R F A
7 Ve, ifjes



Definition 4. Similarly, if A € R™*N | then Ag := the sub-matriz of A consisting of the columns
of A indexed in S.

100 0
o 100 . . ) o 100
Example 2. ¥ = 100 and A is the 4 x 4 identity, A = I4x4, and S = {2,4},then g = 0
100 100
0 0
1 0
and Ag = 0 0
0 1
Example 3. Ty, =7 VI € cV

Definition 5. Let A € C™*N. Then k'™ restricted isometry constant of A, ex(A), is
A) = AsAg — 1 - {lot(as) - 1], o (4 —1’}.
r(4) sg[IJ{/l]?lﬁgkal( 5As — isixs) SCNTISI<k [o1(45) %js(As)

Note: If A € R™*¥ has the RIP of order k for ¢, then e;(A) < e. Theorem 1 above is simply a
means of bounding the restricted isometry constants of certain random matrices.

)

Any matrix with small RI constants will be useful for sparse approximation, as we will begin to see
next.

Lemma 1. Let i, € CV be complex vectors s.t. ||dllo < k, ||¥]lo < t. If supp(@) N supp(T) = 0,
then
| < AT, AT > | < el A) - [Tz - |7l

Proof: Let S := supp(i) U supp(¥) so that |S| = ¢t + k. Since @ and ¥ have disjoint supports, we
have < @, >= 0. Thus,

| < A, AT > | = | < Agiig, Agts > |

= | < Agig, AsUs > — < Ug, Vs > ‘

=| < (A5As — I)is, Us > |

< |I(A5As — DIl - [[ds]ls - |slls  (by Holder’s Inequality)
< ept(A) - ||ts|l2 - [|Vs]l2-

O

N N
L’“(ﬂSj then ¥ = gL:ko Z's; where S;NS; =0 if I # j, and |S;] < k for all

Note: If # € CV, [N] = U2

i=0,1,...,[%]

Definition 6. For any ¥ € CN, we will let its coordinates be ordered by magnitude s.t.
|Tiy| > |@iy| > oo > [Ty |

and we will set So = {i1,42, ..., i} , and Sj = {i14jk, 924 jks -+ i(j41)k} for all j € H%J]

Lemma 2. If i € CV and Vecy satisfy

U = max |u;| < min |v; 2
Julloe = mscu] < min [o; @

T l12]x
then ||il]ls < N



Proof: Homework 2.

Theorem 2. Suppose that ea(A) < 3 for some A € C™*N . Then

. eor(A) .
< - =rr 7
Jislh < 20 sl )

for all v € ker(A)and VS C {1,2,3,...., N} with |S| < k.

Note: (3) holding as above is commonly referred to as the “null space property” with constant

2(A) _ If AF =0 then @ cannot be k-sparse.

1—262k(A)'
Proof: Let S C [N] with |S| < k. If (3) holds for just Sy w.r.t. at given ¥ it is enough since
car(A) sz( )
< —_— —_— 4
1sly = Wsolh = 350y 1Pselle = 75y 175112 (4)

Therefore, it suffices to establish (3) for Sy w.r.t. each ¢ € ker(A)
By definition of the Restricted Isometry (RI) constant, esx(A) > €x(A). Thus

(1= e2r(A)) [T, 13 < (1 = er(A))[|Ts 13 < 14T 13, ()

and so
1

1
- 2<7 AT 2:714—» Atia ).
[vsollz < 1_e%(A)H Uso |2 1_62k(A)< Vs, Alis, )

N
Since ¥ € ker(A), we have that Avg, = — Z]L:’“lj Avg;. Thus, Lemma 1 implies that

1 R o 62k
[1Tso]13 < WZ(AUSO,—AUSQ < Z 1Ts5 ll2- 11T, [|2
Jj=>1
and so we get that

||
k

. €2k ) .

75l = 20 2 17 e (6)

=1

lFs,; ;1

Now, Lemma 2 tells us that ||7s, |2 < — V45 > 1. Thus,

. 1 €or(A) .
< 2R )
T2 < Ji T en(A) 191l

Now to finish, we note that Hélder’s Inequality implies that ||7s,||1 < ||Us, |2 - Vk. Therefore, a
rearrangement of the last inequality will give us the desired result. O

1.1 Homework Problems:- due March 21%* (Tue.)

Homework 1: Prove theorem 1.
Homework 2: Prove lemma 2.
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