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1 The Johnson-LindenStrauss Lemma

Theorem 1. Let P ⊆ CN , where P is a finite set and |P | = M ∈ N, be an arbitrary set of
points. Let p, ε ∈ (0, 1). Finally, let A ∈ Rm×N have i.i.d (independent identically distributed)mean
0,variance 1,subgaussian entries with parameter c. Then

(1− ε)‖~x− ~y‖22 ≤
∥∥∥∥ 1√

m
A(~x− ~y)

∥∥∥∥2
2

≤ (1 + ε)‖~x− ~y‖22 (∗)

for all ~x, ~y ∈ P with ~x 6= ~y with probability at least p, provided that

m ≥ 8c(16c+ 1)

ε2
ln

(
4M2

1− p

)

Here A is entirely independent of P , yet it preserves its “intrinsic geometry” with high probability!

1.1 Homework Problem 5- due Feb 25th(Tue.)

Homework 5: Prove theorem 1.
Hint: Use theorem 2 from lecture 13 and union bound.
Explicit version for a” best c” can be obtained by using lemma 1 from lecture 10.

Definition 1. A matrix satisfying (*) is called a Johnson-Lindenstrauss (J-L)embedding for P.

Corollary 1. A “strict” Johnson-Lindenstrauss embedding of P that satisfies

(1− ε)‖~x‖22 ≤
∥∥∥∥ 1√

m
A~x

∥∥∥∥2
2

≤ (1 + ε)‖~x‖22

for all ~x ∈ P exists by theorem 1 for any P ⊂ RN . In the lower bound on m we can have
4M2 → 2M .
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1.2 J-L embeddings for subspaces of RN

Definition 2. Let T ⊂ RN . A δ-cover of T is an Sδ ⊂ T such that

∀~x ∈ T, ∃~y ∈ Sδ s.t. ‖~x− ~y‖2 ≤ δ ⇐⇒ T ⊆
⋃
~y∈Sδ

B(~y, δ).

Definition 3. The δ-covering number of T ⊂ RN , Cδ(T ), is the smallest number such that a
δ-cover of T with cardinality Cδ(T ) exists.

Definition 4. Let T ⊂ RN . A δ-packing of T is a set Pδ ⊂ Twith the property that

‖~x− ~y‖ ≥ δ ∀~x, ~y ∈ Pδ ⊂ T, with ~x 6= ~y

Definition 5. The δ-packing number of T, denoted by Pδ(T ), is the largest achievable cardinality
of any δ-packing Pδ of T.

Lemma 1. Let T ⊂ RN ,and δ ∈ R+,then

P2δ(T ) ≤ Cδ(T ) ≤ Pδ(T ).

Proof: Let P2δ ⊂ T be a maximal 2δ-packing of T . Each ~x ∈ P2δ is closest to a different ~y in any
minimal δ-cover of T. This defines an injection from P2δ ⊂ T into ant minimal δ-cover of T . This
proves the first inequality. For the second inequality, we note that every maximal δ-packing of T
is also a δ-cover of T , lest we can increase its size (a contradiction).

Lemma 2. Let B = B(~0, 1)be the unit ball in RN .Then

Cδ(B) ≤
(

1 +
2

δ

)N
∀δ ∈ R+.

Proof: Let {~x1, ~x2, ...., ~xP }be a maximal δ-packing of B. Note that P = Pδ(B). Then,

Vol
(
∪pl=1B(~xl, δ/2)

)
= P ·Vol

(
δ

2
B

)
≤ Vol

((
1 +

δ

2

)
B

)
Thus,

P

(
δ

2

)N
Vol(B) ≤

(
1 +

δ

2

)N
Vol(B),

implying

P ≤
(

1 +
2

δ

)N
.

Lemma 1 now tells us that

Cδ(B) ≤
(

1 +
2

δ

)N
.
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Lemma 3 (See [1]). Let H be an arbitrary k-dimensional subspace of RN . Let p, ε ∈ (0, 1), and let
A∈ Rm×N be a matrix with i.i.d, mean 0, variance 1,subgaussian entries with parameter c. Choose

m ≥ 32c(16c+ 1)

ε2
· k · ln

( (
1 + 16

ε

)
k
√

(1− p)/2

)
.

Then,

(†) (1− ε)‖~x‖2 ≤
∥∥∥∥ 1√

m
A~x

∥∥∥∥
2

≤ (1 + ε)‖~x‖2

will hold ∀~x ∈ H with probability at least p.

Proof: Let S ⊆ H be the (k − 1)-dimension unit sphere in H,and B be the k-dimension unit ball
in H. Choose a minimal ε

8 -cover of B,
C ε

8
⊂ B.

We now apply theorem 1 to produce a strict J-L embedding of C ε
8

with ε→ ε/2 (see Corollary 1).

The bound for m above now holds by Corollary 1 and Lemma 2 (here ε→ ε
2 and 4M2 → 2|C ε

8
| ≤

2
(
1 + 16

ε

)k
in theorem 1). We have with probability more than p that

(∗∗) (1− ε/2)‖~x‖22 ≤
∥∥∥∥ 1√

m
A~x

∥∥∥∥2
2

≤ (1 + ε/2)‖~x‖22.

holds for all ~x ∈ C ε
8
. We want to show that this weaker result of (**)implies (†) ∀~x ∈ H.

Note. It is enough to establish (†) for all ~x ∈ S since A and H are linear.

Let δ be the smallest number so that∥∥∥∥ 1√
m
A~x

∥∥∥∥
2

≤ (1 + δ)‖~x‖2 = 1 + δ

holds ∀~x ∈ S

Choose any ~x ∈ S, and let ~y ∈ C ε
8
be such that ‖~x− ~y‖ ≤ ε

8 .
We have that∥∥∥∥ 1√

m
A~x

∥∥∥∥
2

≤
∥∥∥∥ 1√

m
A~y

∥∥∥∥
2

+

∥∥∥∥ 1√
m
A(~x− ~y)

∥∥∥∥
2

≤
(√

1 +
ε

2

)
‖~y‖2 + (1 + δ) · ε

8
≤ 1 +

ε

2
+ (1 + δ) · ε

8
.

Now by definition of δ, we have

(1 + δ) ≤ 1 +
ε

2
+ (1 + δ) · ε

8
.

This implies that δ ≤ ε, and gives us the upper bound in (†).

You can obtain the lower bound by noting that any ~x ∈ S will have∥∥∥∥ 1√
m
A~x

∥∥∥∥
2

≥
∥∥∥∥ 1√

m
A~y

∥∥∥∥
2

−
∥∥∥∥ 1√

m
A(~x− ~y)

∥∥∥∥
2

≥ (1− ε/2)
(

1− ε

8

)
− (1 + ε) · ε

8
≥ 1− ε.
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