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1 The Johnson-LindenStrauss Lemma

Theorem 1. Let P C CV, where P is a finite set and |P| = M € N, be an arbitrary set of
points. Let p,e € (0,1). Finally, let A € R™N have i.i.d (independent identically distributed)mean
0,variance 1,subgaussian entries with parameter c. Then
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for all Z,y € P with £ # i with probability at least p, provided that
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Here A is entirely independent of P, yet it preserves its “intrinsic geometry” with high probability!

1.1 Homework Problem 5- due Feb 25th(Tue.)

Homework 5: Prove theorem 1.
Hint: Use theorem 2 from lecture 13 and union bound.
Explicit version for a” best ¢” can be obtained by using lemma 1 from lecture 10.

Definition 1. A matriz satisfying (*) is called a Johnson-Lindenstrauss (J-L)embedding for P.

Corollary 1. A “strict” Johnson-Lindenstrauss embedding of P that satisfies
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for all & € P exists by theorem 1 for any P C RN. In the lower bound on m we can have
4M? — 2M.



1.2 J-L embeddings for subspaces of RY

Definition 2. Let T C RY. A §-cover of T is an S5 C T such that
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Definition 3. The 6-covering number of T C RN, Cs(T), is the smallest number such that a
d-cover of T with cardinality Cs(T) exists.

Definition 4. Let T C RY. A §-packing of T is a set Ps C Twith the property that
17—l >0 VZ, 7€ PsCT, withZ#7q

Definition 5. The §-packing number of T, denoted by Ps(T), is the largest achievable cardinality
of any d-packing Ps of T.

Lemma 1. Let T ¢ RV ,and § € Rt then

Pos(T) < Cs(T) < P5(T).

Proof: Let Pos C T be a maximal 26-packing of T'. Each & € Pss is closest to a different ¢ in any
minimal d-cover of T. This defines an injection from Pos C T into ant minimal d-cover of T. This
proves the first inequality. For the second inequality, we note that every maximal -packing of T'
is also a d-cover of T, lest we can increase its size (a contradiction). O

Lemma 2. Let B = B(0,1)be the unit ball in RN . Then
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Cs(B) < <1 + 5) Vo e RT.

Proof: Let {¥1,Z2,...., Zp}be a maximal §-packing of B. Note that P = Ps(B). Then,

Vol (Ul_, B(#,6/2)) = P - Vol <ZB> < Vol <<1 + g) B>

Thus,
implying

Lemma 1 now tells us that



Lemma 3 (See [1]). Let H be an arbitrary k-dimensional subspace of RN. Let p,e € (0,1), and let
Ae R™N be o matriz with i.i.d, mean 0, variance 1,subgaussian entries with parameter ¢. Choose

_ 32c(16c +1) -k:-ln( (1+16) >
€ V(1=p)/2

m = 2

Then,
. 1 .
@ -l < Hﬁm

will hold VI € H with probability at least p.
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Proof: Let S C H be the (k — 1)-dimension unit sphere in H,and B be the k-dimension unit ball

in H. Choose a minimal g-cover of B,

C: C B.
8

We now apply theorem 1 to produce a strict J-L embedding of C’g with € — ¢/2 (see Corollary 1).
The bound for m above now holds by Corollary 1 and Lemma 2 (here € — § and 4M? — 2|C§\ <

2 (1 + l—f)k in theorem 1). We have with probability more than p that
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holds for all # € C'c. We want to show that this weaker result of (**)implies (1) VZ € H.
Note. It is enough to establish (}) for all Z € S since A and H are linear.

Let 6 be the smallest number so that
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holds Vz € S

Choose any Z € S, and let i/ € C’ébe such that [|Z — ¢ < §.
We have that
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Now by definition of §, we have
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This implies that 0 < ¢, and gives us the upper bound in (}).
You can obtain the lower bound by noting that any & € .S will have
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