Lecture 14 - Feb 20, 2014

Inst. Mark Iwen
Scribe: Amineh Farzannia

Contents

1 The Johnson-LindenStrauss Lemma 1
1.1 Homework Problem 5- due Feb 25th(Tue.) 1
1.2 J-L embeddings for subspaces of \mathbb{R}^{N} 2

1 The Johnson-LindenStrauss Lemma

Theorem 1. Let $P \subseteq \mathbb{C}^{N}$, where P is a finite set and $|P|=M \in \mathbb{N}$, be an arbitrary set of points. Let $p, \epsilon \in(0,1)$. Finally, let $A \in \mathbb{R}^{m \times N}$ have i.i.d (independent identically distributed)mean 0, variance 1, subgaussian entries with parameter c. Then

$$
\begin{equation*}
(1-\epsilon)\|\vec{x}-\vec{y}\|_{2}^{2} \leq\left\|\frac{1}{\sqrt{m}} A(\vec{x}-\vec{y})\right\|_{2}^{2} \leq(1+\epsilon)\|\vec{x}-\vec{y}\|_{2}^{2} \tag{*}
\end{equation*}
$$

for all $\vec{x}, \vec{y} \in P$ with $\vec{x} \neq \vec{y}$ with probability at least p, provided that

$$
m \geq \frac{8 c(16 c+1)}{\epsilon^{2}} \ln \left(\frac{4 M^{2}}{1-p}\right)
$$

Here A is entirely independent of P, yet it preserves its "intrinsic geometry" with high probability!

1.1 Homework Problem 5- due Feb 25th(Tue.)

Homework 5: Prove theorem 1.
Hint: Use theorem 2 from lecture 13 and union bound.
Explicit version for a" best c" can be obtained by using lemma 1 from lecture 10.

Definition 1. A matrix satisfying (*) is called a Johnson-Lindenstrauss (J-L)embedding for P.
Corollary 1. A"strict" Johnson-Lindenstrauss embedding of P that satisfies

$$
(1-\epsilon)\|\vec{x}\|_{2}^{2} \leq\left\|\frac{1}{\sqrt{m}} A \vec{x}\right\|_{2}^{2} \leq(1+\epsilon)\|\vec{x}\|_{2}^{2}
$$

for all $\vec{x} \in P$ exists by theorem 1 for any $P \subset \mathbb{R}^{N}$. In the lower bound on m we can have $4 M^{2} \rightarrow 2 M$.

1.2 J-L embeddings for subspaces of \mathbb{R}^{N}

Definition 2. Let $T \subset \mathbb{R}^{N}$. A δ-cover of T is an $S_{\delta} \subset T$ such that

$$
\forall \vec{x} \in T, \exists \vec{y} \in S_{\delta} \text { s.t. }\|\vec{x}-\vec{y}\|_{2} \leq \delta \Longleftrightarrow T \subseteq \bigcup_{\vec{y} \in S_{\delta}} B(\vec{y}, \delta) .
$$

Definition 3. The δ-covering number of $T \subset \mathbb{R}^{N}, C_{\delta}(T)$, is the smallest number such that a δ-cover of T with cardinality $C_{\delta}(T)$ exists.

Definition 4. Let $T \subset \mathbb{R}^{N}$. A δ-packing of T is a set $P_{\delta} \subset T$ with the property that

$$
\|\vec{x}-\vec{y}\| \geq \delta \quad \forall \vec{x}, \vec{y} \in P_{\delta} \subset T, \text { with } \vec{x} \neq \vec{y}
$$

Definition 5. The δ-packing number of T, denoted by $P_{\delta}(T)$, is the largest achievable cardinality of any δ-packing P_{δ} of T.

Lemma 1. Let $T \subset \mathbb{R}^{N}$, and $\delta \in \mathbb{R}^{+}$, then

$$
P_{2 \delta}(T) \leq C_{\delta}(T) \leq P_{\delta}(T)
$$

Proof: Let $P_{2 \delta} \subset T$ be a maximal 2δ-packing of T. Each $\vec{x} \in P_{2 \delta}$ is closest to a different \vec{y} in any minimal δ-cover of T . This defines an injection from $P_{2 \delta} \subset T$ into ant minimal δ-cover of T. This proves the first inequality. For the second inequality, we note that every maximal δ-packing of T is also a δ-cover of T, lest we can increase its size (a contradiction).

Lemma 2. Let $B=B(\overrightarrow{0}, 1)$ be the unit ball in \mathbb{R}^{N}. Then

$$
C_{\delta}(B) \leq\left(1+\frac{2}{\delta}\right)^{N} \quad \forall \delta \in \mathbb{R}^{+}
$$

Proof: Let $\left\{\vec{x}_{1}, \vec{x}_{2}, \ldots ., \vec{x}_{P}\right\}$ be a maximal δ-packing of B. Note that $P=P_{\delta}(B)$. Then,

$$
\operatorname{Vol}\left(\cup_{l=1}^{p} B\left(\vec{x}_{l}, \delta / 2\right)\right)=P \cdot \operatorname{Vol}\left(\frac{\delta}{2} B\right) \leq \operatorname{Vol}\left(\left(1+\frac{\delta}{2}\right) B\right)
$$

Thus,

$$
P\left(\frac{\delta}{2}\right)^{N} \operatorname{Vol}(B) \leq\left(1+\frac{\delta}{2}\right)^{N} \operatorname{Vol}(B)
$$

implying

$$
P \leq\left(1+\frac{2}{\delta}\right)^{N}
$$

Lemma 1 now tells us that

$$
C_{\delta}(B) \leq\left(1+\frac{2}{\delta}\right)^{N}
$$

Lemma 3 (See [1]). Let H be an arbitrary k-dimensional subspace of \mathbb{R}^{N}. Let $p, \epsilon \in(0,1)$, and let $A \in \mathbb{R}^{m \times N}$ be a matrix with i.i.d, mean 0, variance 1 ,subgaussian entries with parameter c. Choose

$$
m \geq \frac{32 c(16 c+1)}{\epsilon^{2}} \cdot k \cdot \ln \left(\frac{\left(1+\frac{16}{\epsilon}\right)}{\sqrt[k]{(1-p) / 2}}\right)
$$

Then,

$$
\text { (†) } \quad(1-\epsilon)\|\vec{x}\|_{2} \leq\left\|\frac{1}{\sqrt{m}} A \vec{x}\right\|_{2} \leq(1+\epsilon)\|\vec{x}\|_{2}
$$

will hold $\forall \vec{x} \in H$ with probability at least p.
Proof: Let $S \subseteq H$ be the $(k-1)$-dimension unit sphere in H, and B be the k-dimension unit ball in H. Choose a minimal $\frac{\epsilon}{8}$-cover of B,

$$
C_{\frac{\epsilon}{8}} \subset B .
$$

We now apply theorem 1 to produce a strict J-L embedding of $C_{\frac{\epsilon}{8}}$ with $\epsilon \rightarrow \epsilon / 2$ (see Corollary 1). The bound for m above now holds by Corollary 1 and Lemma 2 (here $\epsilon \rightarrow \frac{\epsilon}{2}$ and $4 M^{2} \rightarrow 2\left|C_{\frac{\varepsilon}{8}}\right| \leq$ $2\left(1+\frac{16}{\epsilon}\right)^{k}$ in theorem 1). We have with probability more than p that

$$
\begin{equation*}
(1-\epsilon / 2)\|\vec{x}\|_{2}^{2} \leq\left\|\frac{1}{\sqrt{m}} A \vec{x}\right\|_{2}^{2} \leq(1+\epsilon / 2)\|\vec{x}\|_{2}^{2} \tag{**}
\end{equation*}
$$

holds for all $\vec{x} \in C_{\frac{\epsilon}{8}}$. We want to show that this weaker result of (${ }^{* *}$)implies (\dagger) $\forall \vec{x} \in H$.
Note. It is enough to establish (\dagger) for all $\vec{x} \in S$ since A and H are linear.
Let δ be the smallest number so that

$$
\left\|\frac{1}{\sqrt{m}} A \vec{x}\right\|_{2} \leq(1+\delta)\|\vec{x}\|_{2}=1+\delta
$$

holds $\forall \vec{x} \in S$
Choose any $\vec{x} \in S$, and let $\vec{y} \in C_{\frac{\epsilon}{8}}$ be such that $\|\vec{x}-\vec{y}\| \leq \frac{\epsilon}{8}$.
We have that

$$
\left\|\frac{1}{\sqrt{m}} A \vec{x}\right\|_{2} \leq\left\|\frac{1}{\sqrt{m}} A \vec{y}\right\|_{2}+\left\|\frac{1}{\sqrt{m}} A(\vec{x}-\vec{y})\right\|_{2} \leq\left(\sqrt{1+\frac{\epsilon}{2}}\right)\|\vec{y}\|_{2}+(1+\delta) \cdot \frac{\epsilon}{8} \leq 1+\frac{\epsilon}{2}+(1+\delta) \cdot \frac{\epsilon}{8} .
$$

Now by definition of δ, we have

$$
(1+\delta) \leq 1+\frac{\epsilon}{2}+(1+\delta) \cdot \frac{\epsilon}{8} .
$$

This implies that $\delta \leq \epsilon$, and gives us the upper bound in (\dagger).
You can obtain the lower bound by noting that any $\vec{x} \in S$ will have

$$
\left\|\frac{1}{\sqrt{m}} A \vec{x}\right\|_{2} \geq\left\|\frac{1}{\sqrt{m}} A \vec{y}\right\|_{2}-\left\|\frac{1}{\sqrt{m}} A(\vec{x}-\vec{y})\right\|_{2} \geq(1-\epsilon / 2)\left(1-\frac{\epsilon}{8}\right)-(1+\epsilon) \cdot \frac{\epsilon}{8} \geq 1-\epsilon .
$$

References

[1] Richard Baraniuk, and Mark Davenport, and Ronald DeVore, and Michael Wakin. A Simple Proof of the Restricted Isometry Property for Random Matrices. Constructive Approximation, vol. 28, num. 3, pp. 253-263, 2008.

