MTH 995-003: Intro to CS and Big Data

Spring 2014

Lecture 13 — Feb 18th, 2014

Inst. Mark Iwen

Scribe: Ruochuan Zhang

1 A Concentration Inequality for Subgaussians

Recall that the following fact was critical to our analysis of the LSH function we considered for Euclidean distance:

• If $\vec{g} \sim N(0, I_{D \times D})$, then $\langle \vec{g}, \vec{x} \rangle \sim N(0, \|\vec{x}\|_2^2)$.

We can finally now get a similar result for any subgaussian random vector!

Theorem 1 (Stability of Subgaussians). Let $\mathbb{X}_1, ..., \mathbb{X}_m$ be i.i.d. mean zero subgaussian random variables. Let $\vec{a} \in \mathbb{R}^m$, and define $Z := \sum_{l=1}^m a_l \mathbb{X}_l$. Then Z is also subgaussian. More specifically, if $\mathbb{E} [\exp(\theta \mathbb{X}_l)] \leq \exp(c\theta^2)$, $\forall \theta, l$, then (i) $\mathbb{E} [\exp(\theta Z)] \leq \exp(c\|\vec{a}\|_2^2 \theta^2)$, and (ii) $\mathbb{P} [|Z| \geq t] \leq 2 \exp\left(\frac{-t^2}{4c\|\vec{a}\|_2^2}\right)$, $\forall t > 0$.

Proof. For part (i)

$$\mathbb{E}\left[\exp\left[\theta\sum_{l=1}^{m}a_{l}\mathbb{X}_{l}\right]\right] = \prod_{l=1}^{m}\mathbb{E}\left[\exp(\theta a_{l}\mathbb{X}_{l})\right] \quad (by \ independence \ of \ \mathbb{X}_{l} \ 's)$$

$$\leq \prod_{l=1}^{m}\exp(c\theta^{2}a_{l}^{2}) \quad (by \ Thm \ 1, \ part \ 1 \ of \ Lecture \ 12)$$

$$= \exp(c\|\vec{a}\|_{2}^{2}\theta^{2})$$

Part(ii) follows from Thm1, part 2 from Lecture 12.

Definition 1. A subgaussian random variable has parameter c if $\mathbb{E}[exp(\mathbb{X}\theta)] \leq exp(\theta^2 c), \quad \forall \theta \in \mathbb{R}.$

Lemma 1. Let \vec{Y} be a random vector with i.i.d. subgaussian entries, all with parameter c, mean 0, and variance 1. Then (i) $\mathbb{E}\left[|\langle \vec{Y}, \vec{x} \rangle|^2\right] = \|\vec{x}\|_2^2$, $\forall \vec{x} \in \mathbb{R}^N$, and (ii) $\langle \vec{Y}, \frac{\vec{x}}{\|\vec{x}\|} \rangle$ is a subgaussian random variable with $\mathbb{E}\left[exp(\theta\left\langle \vec{Y}, \frac{\vec{x}}{\|\vec{x}\|} \right\rangle)\right] \leq \exp(c\theta^2), \forall \theta \in \mathbb{R}.$ *Proof.* Part (i) by a now-familiar calculation. Part (ii) by Thm 1 above.

We can now prove the same type of concentration inequality for subgaussians that we had for gaussians (recall Lemma 1 in Lecture 10).

Theorem 2. Let $A \in \mathbb{R}^{m \times N}$ be a matrix with *i.i.d.* mean zero, variance 1, subgaussian entries (each with parameter c). Then $\forall \vec{x} \in \mathbb{R}^N$ and $t \in (0, 1)$

$$\mathbb{P}\left[\left|\frac{1}{m} \|A\vec{x}\|_{2}^{2} - \|\vec{x}\|_{2}^{2}\right| \ge t \|\vec{x}\|_{2}^{2}\right] \le 2\exp(-\tilde{c}t^{2}m)$$

where $\tilde{c} \in \mathbb{R}^+$ depends only on c. (e.g. $\tilde{c} = \frac{1}{(16c+1)8c}$ works)

Proof. Let $\vec{Y}_1, ..., \vec{Y}_m \in \mathbb{R}^N$ be the rows of $A \in \mathbb{R}^{m \times N}$, and set $Z_l := |\langle Y_l, \vec{x} \rangle|^2 - \|\vec{x}\|_2^2$, $l \in [m]$.

- Note: $\mathbb{E}[Z_l] = 0$ by Lemma 1, (i).
- Also $\frac{1}{||\vec{x}||_2^2} Z_l$ is subexponential with $\beta = 2$, $K = \frac{1}{4c}$. Here's why: By Lemma 1, (ii), $\left\langle \vec{Y}, \frac{\vec{x}}{||\vec{x}||} \right\rangle$ is subgaussian with parameter c. Thus, Thm 1, part(2) from Lecture 12 implies that $\mathbb{E}[\langle \vec{Y}, \frac{\vec{x}}{||\vec{x}||} \rangle] = 0$ and subgaussian with $\beta = 2$ and $\kappa = \frac{1}{4c}$. Thus, $\mathbb{P}[|\langle \vec{Y}_l, \frac{\vec{x}}{||\vec{x}||} \rangle|^2 \ge r^2] \le \beta e^{-kr^2}$, $\forall r \in \mathbb{R}^+ \Rightarrow \frac{1}{||\vec{x}||_2^2} Z_l$ is subexponential with the same κ and β .

We are now able to see that the event we care about is

$$\frac{1}{||\vec{x}||_2^2} (m^{-1}||A\vec{x}||_2^2 - ||\vec{x}||_2^2) = \frac{1}{m} \sum_{l=1}^m \frac{|\langle \vec{Y}_l, \vec{x} \rangle|^2 - ||\vec{x}||_2^2}{||\vec{x}||_2^2}$$
$$= \frac{1}{m} \sum_{l=1}^m \frac{Z_l}{||\vec{x}||_2^2}$$

Furthermore, Bernstein's inequality for subexponential random variables (Thm 3, Lecture 11) implies that

$$\begin{split} \mathbb{P}\left[\frac{1}{m||\vec{x}||_{2}^{2}}\left|\sum_{l=1}^{m}Z_{l}\right| \geq t\right] &= \mathbb{P}\left[\left|\sum_{l=1}^{m}\frac{Z_{l}}{||\vec{x}||_{2}^{2}}\right| \geq mt\right] \\ &\leq 2\exp\left(\frac{-mt^{2}\kappa^{2}}{4\beta+2kt}\right) \\ &\leq 2\exp\left(\frac{-\kappa^{2}}{4\beta+2\kappa}(mt^{2})\right) \quad since \ t \in (0,1). \end{split}$$