Lecture 13 - Feb 18th, 2014
Inst. Mark Iwen
Scribe: Ruochuan Zhang

1 A Concentration Inequality for Subgaussians

Recall that the following fact was critical to our analysis of the LSH function we considered for Euclidean distance:

- If $\vec{g} \sim N\left(0, I_{D \times D}\right)$, then $<\vec{g}, \vec{x}>\sim N\left(0,\|\vec{x}\|_{2}^{2}\right)$.

We can finally now get a similar result for any subgaussian random vector!
Theorem 1 (Stability of Subgaussians). Let $\mathbb{X}_{1}, \ldots, \mathbb{X}_{m}$ be i.i.d. mean zero subgaussian random variables. Let $\vec{a} \in \mathbb{R}^{m}$, and define $Z:=\sum_{l=1}^{m} a_{l} \mathbb{X}_{l}$. Then Z is also subgaussian. More specifically, if $\mathbb{E}\left[\exp \left(\theta \mathbb{X}_{l}\right)\right] \leq \exp \left(c \theta^{2}\right), \forall \theta, l$, then
(i) $\mathbb{E}[\exp (\theta Z)] \leq \exp \left(c\|\vec{a}\|_{2}^{2} \theta^{2}\right)$, and
(ii) $\mathbb{P}[|Z| \geq t] \leq 2 \exp \left(\frac{-t^{2}}{4 c \mid \vec{a} \|_{2}^{2}}\right), \forall t>0$.

Proof. For part (i)

$$
\begin{aligned}
\mathbb{E}\left[\exp \left[\theta \sum_{l=1}^{m} a_{l} \mathbb{X}_{l}\right]\right] & \left.=\prod_{l=1}^{m} \mathbb{E}\left[\exp \left(\theta a_{l} \mathbb{X}_{l}\right)\right] \quad \text { (by independence of } \mathbb{X}_{l}{ }^{\prime} s\right) \\
& \leq \prod_{l=1}^{m} \exp \left(c \theta^{2} a_{l}^{2}\right) \quad \text { (by Thm 1, part } 1 \text { of Lecture 12) } \\
& =\exp \left(c\|\vec{a}\|_{2}^{2} \theta^{2}\right)
\end{aligned}
$$

Part(ii) follows from Thm1, part 2 from Lecture 12.

Definition 1. A subgaussian random variable has parameter cif $\mathbb{E}[\exp (\mathbb{X} \theta)] \leq \exp \left(\theta^{2} c\right), \quad \forall \theta \in \mathbb{R}$.
Lemma 1. Let \vec{Y} be a random vector with i.i.d. subgaussian entries, all with parameter c, mean 0 , and variance 1 . Then
(i) $\mathbb{E}\left[|\langle\vec{Y}, \vec{x}\rangle|^{2}\right]=\|\vec{x}\|_{2}^{2}, \quad \forall \vec{x} \in \mathbb{R}^{N}$, and
(ii) $\left\langle\vec{Y}, \frac{\vec{x}}{\|\vec{x}\|}\right\rangle$ is a subgaussian random variable with $\mathbb{E}\left[\exp \left(\theta\left\langle\vec{Y}, \frac{\vec{x}}{\|\vec{x}\|}\right\rangle\right)\right] \leq \exp \left(c \theta^{2}\right), \forall \theta \in \mathbb{R}$.

Proof. Part (i) by a now-familiar calculation.
Part (ii) by Thm 1 above.

We can now prove the same type of concentration inequality for subgaussians that we had for gaussians (recall Lemma 1 in Lecture 10).

Theorem 2. Let $A \in \mathbb{R}^{m \times N}$ be a matrix with i.i.d. mean zero, variance 1, subgaussian entries (each with parameter c). Then $\forall \vec{x} \in \mathbb{R}^{N}$ and $t \in(0,1)$

$$
\mathbb{P}\left[\left|\frac{1}{m}\|A \vec{x}\|_{2}^{2}-\|\vec{x}\|_{2}^{2}\right| \geq t\|\vec{x}\|_{2}^{2}\right] \leq 2 \exp \left(-\tilde{c} t^{2} m\right)
$$

where $\tilde{c} \in \mathbb{R}^{+}$depends only on c. (e.g. $\tilde{c}=\frac{1}{(16 c+1) 8 c}$ works)
Proof. Let $\vec{Y}_{1}, \ldots, \vec{Y}_{m} \in \mathbb{R}^{N}$ be the rows of $A \in \mathbb{R}^{m \times N}$, and set $Z_{l}:=\left|\left\langle Y_{l}, \vec{x}\right\rangle\right|^{2}-\|\vec{x}\|_{2}^{2}, \quad l \in[m]$.

- Note: $\mathbb{E}\left[Z_{l}\right]=0$ by Lemma 1, (i).
- Also $\frac{1}{\|\vec{x}\|_{2}^{2}} Z_{l}$ is subexponential with $\beta=2, K=\frac{1}{4 c}$. Here's why:

By Lemma 1, (ii), $\left\langle\vec{Y}, \frac{\vec{x}}{\|\vec{x}\|}\right\rangle$ is subgaussian with parameter c. Thus, Thm 1, part(2) from Lecture 12 implies that $\mathbb{E}\left[<\vec{Y}, \frac{\vec{x}}{\|\vec{x}\|}>\right]=0$ and subgaussian with $\beta=2$ and $\kappa=\frac{1}{4 c}$.
Thus, $\mathbb{P}\left[\left|<\overrightarrow{Y_{l}}, \frac{\vec{x}}{\|\vec{x}\|}>\right|^{2} \geq r^{2}\right] \leq \beta e^{-k r^{2}}, \quad \forall r \in \mathbb{R}^{+} \Rightarrow \frac{1}{\|\vec{x}\|_{2}^{2}} Z_{l}$ is subexponential with the same κ and β.

We are now able to see that the event we care about is

$$
\begin{aligned}
\frac{1}{\|\vec{x}\|_{2}^{2}}\left(m^{-1}\|A \vec{x}\|_{2}^{2}-\|\vec{x}\|_{2}^{2}\right) & =\frac{1}{m} \sum_{l=1}^{m} \frac{\mid\left\langle\vec{Y}_{l}, \vec{x}>\left.\right|^{2}-\|\vec{x}\|_{2}^{2}\right.}{\|\vec{x}\|_{2}^{2}} \\
& =\frac{1}{m} \sum_{l=1}^{m} \frac{Z_{l}}{\|\vec{x}\|_{2}^{2}}
\end{aligned}
$$

Furthermore, Bernstein's inequality for subexponential random variables (Thm 3, Lecture 11) implies that

$$
\begin{aligned}
\mathbb{P}\left[\frac{1}{m\|\vec{x}\|_{2}^{2}}\left|\sum_{l=1}^{m} Z_{l}\right| \geq t\right] & =\mathbb{P}\left[\left|\sum_{l=1}^{m} \frac{Z_{l}}{\|\vec{x}\|_{2}^{2}}\right| \geq m t\right] \\
& \leq 2 \exp \left(\frac{-m t^{2} \kappa^{2}}{4 \beta+2 k t}\right) \\
& \leq 2 \exp \left(\frac{-\kappa^{2}}{4 \beta+2 \kappa}\left(m t^{2}\right)\right) \quad \text { since } t \in(0,1) .
\end{aligned}
$$

