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1 A Concentration Inequality for Subgaussians

Recall that the following fact was critical to our analysis of the LSH function we considered for
Euclidean distance:

• If ~g ∼ N(0, ID×D), then < ~g, ~x >∼ N(0, ‖~x‖22).

We can finally now get a similar result for any subgaussian random vector!

Theorem 1 (Stability of Subgaussians). Let X1, ...,Xm be i.i.d. mean zero subgaussian random
variables. Let ~a ∈ Rm, and define Z :=

∑m
l=1 alXl. Then Z is also subgaussian. More specifically,

if E [exp(θXl)] ≤ exp(cθ2), ∀θ, l, then
(i) E [exp(θZ)] ≤ exp(c‖~a‖22θ2), and

(ii) P [|Z| ≥ t] ≤ 2 exp
(
−t2

4c‖~a‖22

)
, ∀t > 0.

Proof. For part (i)

E

[
exp

[
θ

m∑
l=1

alXl

]]
=

m∏
l=1

E [exp(θalXl)] (by independence of Xl
′s)

≤
m∏
l=1

exp(cθ2a2l ) (by Thm 1, part 1 of Lecture 12)

= exp(c‖~a‖22θ2)

Part(ii) follows from Thm1, part 2 from Lecture 12.

Definition 1. A subgaussian random variable has parameter c if E [exp(Xθ)] ≤ exp(θ2c), ∀θ ∈ R.

Lemma 1. Let ~Y be a random vector with i.i.d. subgaussian entries, all with parameter c, mean
0, and variance 1. Then

(i) E
[
|
〈
~Y , ~x

〉
|2
]

= ‖~x‖22, ∀~x ∈ RN , and

(ii)
〈
~Y , ~x
‖~x‖

〉
is a subgaussian random variable with E

[
exp(θ

〈
~Y , ~x
‖~x‖

〉
)
]
≤ exp(cθ2), ∀θ ∈ R.

1



Proof. Part (i) by a now-familiar calculation.
Part (ii) by Thm 1 above.

We can now prove the same type of concentration inequality for subgaussians that we had for
gaussians (recall Lemma 1 in Lecture 10).

Theorem 2. Let A ∈ Rm×N be a matrix with i.i.d. mean zero, variance 1, subgaussian entries
(each with parameter c). Then ∀~x ∈ RN and t ∈ (0, 1)

P
[∣∣∣∣ 1

m
‖A~x‖22 − ‖~x‖22

∣∣∣∣ ≥ t‖~x‖22] ≤ 2 exp(−c̃t2m)

where c̃ ∈ R+depends only on c. (e.g. c̃ = 1
(16c+1)8c works)

Proof. Let ~Y1, ..., ~Ym ∈ RN be the rows of A ∈ Rm×N , and set Zl := | 〈Yl, ~x〉 |2 − ‖~x‖22, l ∈ [m].

• Note: E[Zl] = 0 by Lemma 1, (i).

• Also 1
||~x||22

Zl is subexponential with β = 2, K = 1
4c . Here’s why:

By Lemma 1, (ii),
〈
~Y , ~x
||~x||

〉
is subgaussian with parameter c. Thus, Thm 1, part(2) from

Lecture 12 implies that E[< ~Y , ~x
||~x|| >] = 0 and subgaussian with β = 2 and κ = 1

4c .

Thus, P[| < ~Yl,
~x
||~x|| > |

2 ≥ r2] ≤ βe−kr
2
, ∀r ∈ R+ ⇒ 1

||~x||22
Zl is subexponential with the

same κ and β.

We are now able to see that the event we care about is

1

||~x||22
(m−1||A~x||22 − ||~x||22) =

1

m

m∑
l=1

| < ~Yl, ~x > |2 − ||~x||22
||~x||22

=
1

m

m∑
l=1

Zl

||~x||22

Furthermore, Bernstein’s inequality for subexponential random variables (Thm 3, Lecture 11) im-
plies that

P

[
1

m||~x||22

∣∣∣∣∣
m∑
l=1

Zl

∣∣∣∣∣ ≥ t
]

= P

[∣∣∣∣∣
m∑
l=1

Zl

||~x||22

∣∣∣∣∣ ≥ mt
]

≤ 2 exp

(
−mt2κ2

4β + 2kt

)
≤ 2 exp

(
−κ2

4β + 2κ
(mt2)

)
since t ∈ (0, 1).
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