Lecture 15 - March 5, 2015
Inst. Mark Iwen
Scribe: Thomas Swearingen

1 Hoeffding's Inequality and Corollary

This adds to Lecture 11 from Spring 2014, which details Cramer's Theorem used below.
Theorem 1 (Hoeffding's Inequality). Let $X_{1}, X_{2}, \ldots, X_{M}$ be independent random variables such that $\mathbb{E}\left[X_{l}\right]=0$ and $\left|X_{l}\right| \leq B_{l} \forall l \in[M]$. Then, $\forall t>0$

$$
\begin{equation*}
\mathbb{P}\left(\sum_{l=1}^{M} X_{l} \geq t\right) \leq \exp \left(-\frac{t^{2}}{2 \sum_{l=1}^{M} B_{l}}\right) \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathbb{P}\left(\left|\sum_{l=1}^{M} X_{l}\right| \geq t\right) \leq 2 \exp \left(-\frac{t^{2}}{2 \sum_{l=1}^{M} B_{l}}\right) \tag{2}
\end{equation*}
$$

Proof: We will estimate $\mathbb{E}\left[\exp \left(\theta X_{l}\right)\right]$ and then use Cramer's theorem.

$$
X_{l}=\tilde{t}\left(-B_{l}\right)+(1-\widetilde{t}) B_{l} \quad \text { where } \quad \tilde{t}=\frac{B_{l}-X_{l}}{2 B_{l}} \text { is random }
$$

Since $\exp \left(\theta X_{l}\right)$ is a convex function, we have

$$
\begin{aligned}
\exp \left(\theta X_{l}\right) & \leq \widetilde{t} \exp \left(-\theta B_{l}\right)+(1-\widetilde{t}) \exp \left(\theta B_{l}\right) \\
& =\left(\frac{B_{l}-X_{l}}{2 B_{l}}\right) \exp \left(-\theta B_{l}\right)+\left(\frac{B_{l}+X_{l}}{2 B_{l}}\right) \exp \left(\theta B_{l}\right)
\end{aligned}
$$

Taking the expectation of both sides yields

$$
\begin{aligned}
\mathbb{E}\left[\exp \left(\theta X_{l}\right)\right] & \leq \frac{1}{2} \exp \left(-\theta B_{l}\right)+\frac{1}{2} \exp \left(\theta B_{l}\right)=\sum_{k=0}^{\infty} \frac{\left(\theta B_{l}\right)^{2 k}}{(2 k)!} \\
& \leq \sum_{k=0}^{\infty} \frac{\left(\theta B_{l}\right)^{2 k}}{2^{k} k!}=\exp \left(\frac{\theta^{2} B_{l}^{2}}{2}\right)
\end{aligned}
$$

If we apply Cramer's theorem with $\theta=\frac{\tilde{t}}{\sum_{l=1}^{M} B_{l}^{2}}$, rearrange with alegbra, we get the result in Equations 1 and 2.
Corollary. Let $a \in \mathbb{R}^{N}$ and

$$
X_{l}= \begin{cases}+1 & \text { with probability } \frac{1}{2} \\ -1 & \text { with probability } \frac{1}{2}\end{cases}
$$

Let random vector \vec{b} have entries $b_{l}=X_{l}$ and be I.I.D. Then, $\forall u>0$ we have

$$
\begin{aligned}
\mathbb{P}\left[|\langle\vec{a}, \vec{b}\rangle| \geq\|\vec{a}\|_{2} u\right] & =\mathbb{P}\left[\left|\sum_{l=1}^{N} a_{l} X_{l}\right| \geq\|\vec{a}\|_{2} u\right] \\
& \leq 2 \exp \left(-\frac{u^{2}}{2}\right)
\end{aligned}
$$

By Hoeffding's Inequality

