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Inst. Mark Iwen Scribe: Oleksii Karpenko

1 Overview

In the last lecture we discussed Gaussian random variables and used their properties to bound the
probability in Lemma 1 (see Lecture 10):

P
[∣∣∣〈~g, ~x〉2 − ‖~x‖22∣∣∣ ≥ t‖~x‖22] ≤ e−ct2 (1)

Recall that inequality (1) is directly related to LSH functions, where we use it to hash vectors
to their length (modulo w). This time will give answers to the following questions: what if ~g is
a zero-mean vector with independent and identically distributed entries that are not Gaussians?
Suppose we are given independent gj ’s with E[gj ] = 0 and Var[gj ] = 1. Consider

P

∣∣∣∣∣∣
 m∑
j=1

gj · xj

2

− ‖~x‖22

∣∣∣∣∣∣ ≥ t‖~x‖22
 (2)

Can we still bound the probability (2) in this case? We will be working towards answers to this
question over the next couple lectures.

Theorem 1 (Cramer’s Theorem). Let X1, X2, . . .Xm be independent and identically distributed
real-valued random variables with Cumulant Generating Functions (CGF) (see, e.g., [1]) defined as

CXl
(Θ) := ln

(
E
[
eΘXl

])
, l ∈ [m]. (3)

Then for ∀t > 0, the following inequality holds

P

[
m∑
l=1

Xl ≥ t

]
≤ exp

{
inf
Θ>0

(
−Θt+

m∑
l=1

CXl
(Θ)

)}
(4)

Proof:

Let us first re-express the probability of the event by exponentiating:

P

[
m∑
l=1

Xl ≥ t

]
= P

[
exp

{
Θ

m∑
l=1

Xl

}
≥ eΘt

]
(5)

Applying Markov’s inequality and using independence of the random variables, we have:

P

[
exp

{
Θ

m∑
l=1

Xl

}
≥ eΘt

]
≤ e−Θt · E

[
exp

{
Θ

m∑
l=1

Xl

}]
≤ e−Θt ·

m∏
l=1

E
[
eΘXl

]
(6)
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Re-expressing this bound in terms of the CGF gives

P

[
m∑
l=1

Xl ≥ t

]
≤ exp{−Θt+

m∑
l=1

CXl
(Θ)} (7)

Optimizing over Θ by taking the infimum in (7) completes the proof.

This theorem now allows us to prove “the real theorem” of todays lectures. Notices that we used
a variant of this theorem in Lecture 7 already!

Theorem 2 (Bernstein’s Inequality). Let X1, X2, . . .Xm be independent, zero-mean real-valued
random variables, whose moments are bounded for n ≥ 2, such that

E [|Xl|n] ≤
n!Rn−2σ2

l

2
∀l ∈ [m] (8)

for some constants R > 0 and σl > 0. (Note that in general case, R and σl do not have to be equal
for each Xl). Then for ∀t > 0 the following inequality is true

P

[∣∣∣∣∣
m∑
l=1

Xl

∣∣∣∣∣ ≥ t
]
≤ 2 · exp

{
−t2/2
σ2 +Rt

}
(9)

where σ2 :=
∑m

l=1 σ
2
l .

The above inequality tells us that the probability (9) decays quickly with the factor of t2. Note
that we can bound it by putting bounds on the moments E [|Xl|n].

Proof:

Let us estimate the Moment Generating Function of Xl’s using the given bounds on the E [|Xl|n].
The MGF can be expanded in Taylor’s series:

E
[
eΘXl

]
= E

[
1 + ΘXl +

Θ2X2
l

2!
+ . . .

]
(10)

Now using bounds on E [|Xl|n], that E [Xl] = 0, and Fubini’s theorem, we have

E
[
eΘXl

]
= 1 + 0 +

Θ2

2
E
[
X2
l

]
+ . . . = 1 +

∞∑
n=2

ΘnE [Xn
l ]

n!
(11)

Using bounds on moments:

E
[
eΘXl

]
≤ 1 +

σ2
l Θ

2

2

∞∑
n=0

(ΘR)n = 1 +
σ2
l Θ

2

2
(1−RΘ)−1 (12)

provided that ΘR ∈ (0, 1) for series to converge. Finally,

E
[
eΘXl

]
≤ exp

(
σ2
l Θ

2

2(1−ΘR)

)
(13)
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Inequality (13) bounds MGF for each Xl. This gives us what we need to use Cramer’s theorem.
We can now start bounding (9)

P

[∣∣∣∣∣
m∑
l=1

Xl

∣∣∣∣∣ ≥ t
]

= P

[
m∑
l=1

Xl ≥ t

]
+ P

[
m∑
l=1

(−Xl) ≥ t

]
(14)

Thus,

P

[∣∣∣∣∣
m∑
l=1

Xl

∣∣∣∣∣ ≥ t
]
≤ 2 inf

Θ∈(0,1/R)

(
exp

{
−Θt+

σ2Θ2

2(1−ΘR)

})
(15)

from Cramer’s theorem, our bounds on E
[
eΘXl

]
from (13), and our definition of σ2. Finally, choos-

ing Θ = t
σ2+Rt

< 1
R yields the desired bound.

Notice that we need moment bounds in order to use Bernstein’s Inequality. The following lemma
will help us get them for random variables we like.

Lemma 1.

E [|X|n] = n

∫ ∞
0

P [|X| ≥ t] tn−1dt ∀n > 0 (16)

Proof: ∫
Ω
|X|n dP =

∫
Ω

(∫ ∞
0

I{0≤y≤|X|n}dy

)
dP =

∫ ∞
0

P [|X|n ≥ y] dy (17)

by Fubini. After the change of variables y → tn, we have∫
Ω
|X|n dP = n

∫ ∞
0

P [|X|n ≥ tn] tn−1dt. (18)

The desired equality follows.

We will now define the types of random variables we will care most about for the next month.

Definition 1. We shall say that X is a sub-exponential random variable with parameters β > 0
and κ > 0 if

P [|X| ≥ t] ≤ βe−κt ∀t > 0 (19)

Definition 2. Similarly, we will call X a sub-gaussian random variable if ∃ β, κ > 0 such that

P [|X| ≥ t] ≤ βe−κt2 ∀t > 0 (20)

These are fairly general types of random variables. For example, any random variable X, which is
bounded almost surely will be a sub-gaussian (e.g., Bernoulli, binomial, uniform on a compact set,
etc.).

We can now prove another version of Bernstein’s Inequality for sub-exponentials that depends only
on the sub-exponential parameters β and κ.
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Theorem 3 (Bernstein’s Inequality for sub-exponentials). Let X1, X2, . . .Xm be zero-mean inde-
pendent sub-exponential random variables with same parameters β > 0 and κ > 0. Then

P

[∣∣∣∣∣
m∑
l=1

Xl

∣∣∣∣∣ ≥ t
]
≤ 2 exp

{
−(κt)2/2

2βm+ κt

}
∀l ∈ [m] (21)

Proof:

Lemma 1 tells us that the following inequality holds for ∀n ≥ 2

E [|Xl|n] = n

∫ ∞
0

P [|Xl| ≥ t] tn−1dt (22)

Using the definition of a subexponential RV, we have

E [|Xl|n] ≤ βn
∫ ∞

0
e−κttn−1dt = βnκ−n

∫ ∞
0

e−uun−1du (23)

after change of variables (κt → u ). Note that the integral on RHS the Gamma function value
Γ(n) = (n− 1)!, which yields

E [|Xl|n] ≤ βn!

κn
(24)

Applying Bernstein’s inequality with R = 1
κ , σ2

l = 2β
κ2

completes the proof.

Next time we will work our way towards showing that sub-gaussian random matrices behave “a
lot like Gaussians random matrices do”. This will allow us to get concentration inequalities like
Lemma 1 in lecture 10 for much more general types of random matrices.

2 Homework 3

1). Problem 7.2, p.199 of the textbook [1].
2). Problem 7.5, p.199 of the textbook [1].
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