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1 Overview

In the last lecture we discussed LSH approach, and its runtime. In this lecture we will recall LSH
and introduce Large Deviation Inequalities for related matrices.

2 What is known about LSH for `p-norms?

Recall that the runtimes that we could set all depends on ρ := log p1
log p2

, where p1 > p2. For a good
LSH function, we want ρ small.

Theorem 1 (See [1]). Let p ∈ (0,2], δ, c ∈ (1,∞), and r ∈ R+. There exists a LSH function h:
RD → Z, w.r.t. d(~x, ~y) := ||~x− ~y||p, with ρ = log p1

log p2
≤ δ ·max{ 1

cp ,
1
c}.

For p = 2 (Euclidean case), we showed how to do this with Gaussian random vectors.

Theorem 2 (See [2]). There exists an LSH function w.r.t. l2-distance, and for all r ∈ R+, c ∈

(1,∞), that has ρ = 1
c2

+O

(
log log |X|
log

1
3 |X|

)
. (Here X ⊂ RD is the arbitrary finite set we are hashing.)

Theorem 3 (See [3]). For large D (i.e. in the limit), there exists r, p2 for which ρ ≥ 0.462
cp , for

any LSH funtion, w.r.t. any lp-norm, for all c, p ≥ 1.

3 Large Deviation Bounds Related to LSH

3.1 Problem

Given ~g ∼ N(0, ID×D), and ~x ∈ RD, show that

P
[
| < ~g, ~x >2 −‖~x‖22| ≥ t||~x||22

]
is small in t (1)

For LSH, we had computations involving < ~g, ~x > for ~x ∈ RD, ~g ∈ N(0, ID×D), since h(~x) =
b<~g,~x>+u

w c. LSH worked for `2 exactly because this hash function sent vectors to buckets ≈ equal
to their length with high probability!
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3.2 Discussion

Two very nice things happened that let us set our LSH function work for `2:

1: < ~x,~g >∼ N(0, ||~x||22) because Gaussians are stable (i.e., when we add two Gaussians we get
another one).

2: The bound (Eq. 1) held because the inner product was another Gaussian. This meant for LSH
that vectors were hashed to ≈ their length (modulo w).

We are now going to generalize Equation 1 a little bit, and consider what happens if we take several
gaussian measurements of a vector ~x.

If X ∼ N(0, 1), then X2 ∼ χ2
1 (chi-square r.v. with 1 degree of freedom).

Suppose that we have D χ2
1 (i.i.d.) Y1, · · · , YD, let a ∈ R+, Z =

D∑
j=1

aYj . Note that Z ∼ χ2
D, with

D degrees of freedom. The moment generating function (MGF) for Z is E[euZ ] = (1− 2u)−
D
2 , for

all u ∈ (−∞, 12), and E[Z] = D.

P[|Z −D| ≥ t
a ] = P[Z ≥ D(1 + t

Da)] + P[Z ≤ D(1− t
Da)].

Note that,

P
[(

1− t

Da

)
D ≥ Z

]
= P

[
e(1−

t
Da

)Du−uZ ≥ 1
]

≤ e(1−
t

Da
)DuE

[
e−uZ

]
(by the Markov Inequality)

= e(1−
t

Da
)Du(1 + 2u)−D/2.

Similarly, P[(1 + t
Da)D ≤ z] ≤ e−(1+

t
Da

)Du(1− 2u)−D/2,

So,

P [|Z −D| ≥ t/a] ≤ e−(1+
t

Da
)Du(1− 2u)−D/2 + e(1−t/Da)Dũ(1 + 2ũ)−D/2 (2)

holds for any u < 1/2, and ũ > −1/2.

Define f(u) := e−(1+
t

Da
)Du(1− 2u)−D/2, and g(ũ) := e(1−t/Da)Dũ(1 + 2ũ)−D/2.

Optimize the choices of u and ũ by minimizing

ln(f(u)) := −
(

1 +
t

Da

)
Du− D

2
ln(1− 2u)

ln(g(ũ)) :=

(
1− t

Da

)
Du− D

2
ln(1 + 2ũ)

It is calculated that the following values minimize each of these:

umin =
t/(Da)

2(1 + t/(Da))
, ũmin =

t/(Da)

2(1− t/(Da))
. (3)
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Plugging these values of umin and ũmin back into (2) we see that

P [|z −D| ≥ t/a] ≤ e−
t2

4Da2 + e
−3t2+2t3/(Da)

12Da2 , (4)

for all t, a ∈ R+, D ∈ N.

We have basically proven the following,

Lemma 1. Let G ∈ Rm×D be a random matrix with i.i.d. N(0,1) entries, and ~x ∈ RD, then
P[|m−1||G~x||22 − ||~x||22| ≥ t||~x||22] ≤ e−t

2m/4 + e(−3t
2+2t3)m/12.

Proof: ||G~x||22 ∼ ||~x||22 · χ2
m, so that, P[|m−1||G~x||22 − ||~x||22| ≥ t||~x||22] = P[|Z −m|] ≥ tm], where

Z ∼ χ2
m. The work above (see Equation (4)) now gives us the result when we set a = 1/m,

D = m.

Note that m = 1 above is exactly the case of (1) related to LSH.
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