MTH 995-003: Intro to CS and Big Data

Spring 2014

Lecture 10 — Feb. 6, 2014

Inst. Mark Iwen

Scribe: Jun Zhang

1 Overview

In the last lecture we discussed LSH approach, and its runtime. In this lecture we will recall LSH and introduce Large Deviation Inequalities for related matrices.

2 What is known about LSH for ℓ_p -norms?

Recall that the runtimes that we could set all depends on $\rho := \frac{\log p_1}{\log p_2}$, where $p_1 > p_2$. For a good LSH function, we want ρ small.

Theorem 1 (See [1]). Let $p \in (0,2]$, δ , $c \in (1,\infty)$, and $r \in \mathbb{R}^+$. There exists a LSH function h: $\mathbb{R}^D \to \mathbb{Z}$, w.r.t. $d(\vec{x}, \vec{y}) := ||\vec{x} - \vec{y}||_p$, with $\rho = \frac{\log p_1}{\log p_2} \le \delta \cdot \max\{\frac{1}{c^p}, \frac{1}{c}\}$.

For p = 2 (Euclidean case), we showed how to do this with Gaussian random vectors.

Theorem 2 (See [2]). There exists an LSH function w.r.t. l_2 -distance, and for all $r \in \mathbb{R}^+, c \in (1,\infty)$, that has $\rho = \frac{1}{c^2} + O\left(\frac{\log \log |X|}{\log^{\frac{1}{3}}|X|}\right)$. (Here $X \subset \mathbb{R}^D$ is the arbitrary finite set we are hashing.)

Theorem 3 (See [3]). For large D (i.e. in the limit), there exists r, p_2 for which $\rho \geq \frac{0.462}{c^p}$, for any LSH function, w.r.t. any l_p -norm, for all $c, p \geq 1$.

3 Large Deviation Bounds Related to LSH

3.1 Problem

Given $\vec{g} \sim N(0, I_{D \times D})$, and $\vec{x} \in \mathbb{R}_D$, show that

$$\mathbb{P}\left[|<\vec{g}, \vec{x}>^2 - \|\vec{x}\|_2^2| \ge t ||\vec{x}||_2^2\right] \text{ is small in } t \tag{1}$$

For LSH, we had computations involving $\langle \vec{g}, \vec{x} \rangle$ for $\vec{x} \in \mathbb{R}^D, \vec{g} \in N(0, I_{D \times D})$, since $h(\vec{x}) = \lfloor \frac{\langle \vec{g}, \vec{x} \rangle + u}{w} \rfloor$. LSH worked for ℓ_2 exactly because this hash function sent vectors to buckets \approx equal to their length with high probability!

3.2 Discussion

Two very nice things happened that let us set our LSH function work for ℓ_2 :

1: $\langle \vec{x}, \vec{g} \rangle \sim N(0, ||\vec{x}||_2^2)$ because Gaussians are stable (i.e., when we add two Gaussians we get another one).

2: The bound (Eq. 1) held because the inner product was another Gaussian. This meant for LSH that vectors were hashed to \approx their length (modulo w).

We are now going to generalize Equation 1 a little bit, and consider what happens if we take several gaussian measurements of a vector \vec{x} .

If $X \sim N(0, 1)$, then $X^2 \sim \chi_1^2$ (chi-square r.v. with 1 degree of freedom).

Suppose that we have $D \chi_1^2$ (i.i.d.) Y_1, \dots, Y_D , let $a \in \mathbb{R}^+$, $Z = \sum_{j=1}^D a Y_j$. Note that $Z \sim \chi_D^2$, with D degrees of freedom. The moment generating function (MGF) for Z is $\mathbb{E}[e^{uZ}] = (1-2u)^{-\frac{D}{2}}$, for all $u \in (-\infty, \frac{1}{2})$, and $\mathbb{E}[Z] = D$.

 $\mathbb{P}[|Z - D| \ge \frac{t}{a}] = \mathbb{P}[Z \ge D(1 + \frac{t}{Da})] + \mathbb{P}[Z \le D(1 - \frac{t}{Da})].$

Note that,

$$\mathbb{P}\left[\left(1-\frac{t}{Da}\right)D \ge Z\right] = \mathbb{P}\left[e^{(1-\frac{t}{Da})Du-uZ} \ge 1\right]$$
$$\leq e^{(1-\frac{t}{Da})Du}\mathbb{E}\left[e^{-uZ}\right] \quad \text{(by the Markov Inequality)}$$
$$= e^{(1-\frac{t}{Da})Du}(1+2u)^{-D/2}.$$

Similarly, $\mathbb{P}[(1 + \frac{t}{Da})D \le z] \le e^{-(1 + \frac{t}{Da})Du}(1 - 2u)^{-D/2}$, So,

$$\mathbb{P}\left[|Z - D| \ge t/a\right] \le e^{-(1 + \frac{t}{Da})Du}(1 - 2u)^{-D/2} + e^{(1 - t/Da)D\tilde{u}}(1 + 2\tilde{u})^{-D/2}$$
(2)

holds for any u < 1/2, and $\tilde{u} > -1/2$.

Define $f(u) := e^{-(1+\frac{t}{Da})Du}(1-2u)^{-D/2}$, and $g(\tilde{u}) := e^{(1-t/Da)D\tilde{u}}(1+2\tilde{u})^{-D/2}$.

Optimize the choices of u and \tilde{u} by minimizing

$$\ln(f(u)) := -\left(1 + \frac{t}{Da}\right)Du - \frac{D}{2}\ln(1 - 2u)$$
$$\ln(g(\tilde{u})) := \left(1 - \frac{t}{Da}\right)Du - \frac{D}{2}\ln(1 + 2\tilde{u})$$

It is calculated that the following values minimize each of these:

$$u_{\min} = \frac{t/(Da)}{2(1+t/(Da))}, \tilde{u}_{\min} = \frac{t/(Da)}{2(1-t/(Da))}.$$
(3)

Plugging these values of u_{\min} and \tilde{u}_{\min} back into (2) we see that

$$\mathbb{P}\left[|z - D| \ge t/a\right] \le e^{-\frac{t^2}{4Da^2}} + e^{\frac{-3t^2 + 2t^3/(Da)}{12Da^2}},\tag{4}$$

for all $t, a \in \mathbb{R}^+, D \in \mathbb{N}$.

We have basically proven the following,

Lemma 1. Let $G \in \mathbb{R}^{m \times D}$ be a random matrix with i.i.d. N(0,1) entries, and $\vec{x} \in \mathbb{R}^D$, then $\mathbb{P}[|m^{-1}||G\vec{x}||_2^2 - ||\vec{x}||_2^2| \ge t||\vec{x}||_2^2] \le e^{-t^2m/4} + e^{(-3t^2+2t^3)m/12}$.

Proof: $||G\vec{x}||_2^2 \sim ||\vec{x}||_2^2 \cdot \chi_m^2$, so that, $\mathbb{P}[|m^{-1}||G\vec{x}||_2^2 - ||\vec{x}||_2^2] \geq t||\vec{x}||_2^2] = \mathbb{P}[|Z - m|] \geq tm]$, where $Z \sim \chi_m^2$. The work above (see Equation (4)) now gives us the result when we set a = 1/m, D = m.

Note that m = 1 above is exactly the case of (1) related to LSH.

References

- Mayur Datar and Piotr Indyk. Locality-sensitive hashing scheme based on p-stable distributions. Proceedings of the twentieth annual symposium on Computational geometry, 253–262, 2004.
- [2] Andoni, A. and Indyk, P. Near-Optimal Hashing Algorithms for Approximate Nearest Neighbor in High Dimensions. 47th Annual IEEE Symposium on Foundations of Computer Science, 2006. FOCS '06., 459-468, 2006.
- [3] Rajeev Motwani and Assaf Naor and Rina Panigrahi Lower bounds on locality sensitive hashing. Proceedings of the twenty-second annual symposium on Computational geometry, 154-157, 2006.