Spring 2015

Lecture X — Mar 24, 2015

Inst. Aditya Viswanathan

Scribe: Sami Merhi

1 Introduction

Consider an optimization problem in **standard** form:

$$\min_{x \in \mathbb{R}^n} f_0(x) \quad \text{subject to} \quad \begin{cases} f_i(x) \le 0, & i = 1, \dots, m \\ h_i(x) = 0, & i = 1, \dots, p. \end{cases}$$
(1)

We define the domain D of problem (1) as the intersection of the domains of all constraints. That is,

$$D = \left(\bigcap_{i=1}^{m} \operatorname{dom} f_{i}\right) \cap \left(\bigcap_{i=1}^{p} \operatorname{dom} h_{i}\right),$$

We assume that D is non-empty, and denote by p^* the **optimal** value of problem (1).

2 Duality

Definition 1. The Lagrangian associated with (1) is the function $L : \mathbb{R}^n \times \mathbb{R}^m \times \mathbb{R}^p \to \mathbb{R}$ defined by

$$L(x, \lambda, \nu) = f_0(x) + \sum_{i=1}^{m} \lambda_i f_i(x) + \sum_{i=1}^{p} \nu_i h_i(x) + \sum_{i=1}^{p} \mu_i h_i(x)$$

 $\lambda \in \mathbb{R}^m, \nu \in \mathbb{R}^p$

with dom $L = D \times \mathbb{R}^m \times \mathbb{R}^p$. Here

are called **dual variables** (or Lagrange multiplier vectors).

Definition 2. (Lagrange dual function) The **dual function** $g : \mathbb{R}^m \times \mathbb{R}^p \to \mathbb{R}$ is the minimum value of the Lagrangian over all x; that is,

$$g(\lambda,\nu) = \inf_{x\in D} L(x,\lambda,\nu) = \inf_{x\in D} \left[f_0(x) + \sum_{i=1}^m \lambda_i f_i(x) + \sum_{i=1}^p \nu_i h_i(x) \right].$$

Note that the dual function is always concave, being the pointwise infimum of affine functions.

Lemma 1. The dual function provides a lower bound on the optimal value p^* for the optimization problem (1); that is,

$$g\left(\lambda,\nu\right) \le p^* \tag{2}$$

for all $\lambda \succeq 0$ and for all ν .

Remark. By $\lambda \succeq 0$ we mean $\lambda_i \ge 0$ for all $i = 1, \ldots, m$.

For a pair (λ, ν) with $\lambda \succeq 0$ and $(\lambda, \nu) \in \text{dom } g$, we say (λ, ν) are **dual feasible**.

Example 1. A simple linear program

Recall the optimization problem

$$\min_{x \in \mathbb{R}^n} c^T x \quad subject \ to \quad Ax = b, \ x \succeq 0.$$

The Lagrangian associated with this problem is

$$L(x,\lambda,\nu) = c^T x - \sum_{i=1}^{\infty} \lambda_i x_i + \nu^T (Ax - b)$$
$$= -b^T \nu + (c + A^T \nu - \lambda)^T x.$$

Here we have set the inequality constraints as $f_i(x) = -x_i$, for i = 1, ..., m.

The dual function associated with this problem is

$$g(\lambda,\nu) = \inf_{x} L(x,\lambda,\nu) = \begin{cases} -b^{T}\nu, & \text{if } A^{T}\nu - \lambda + c = 0, \\ -\infty, & \text{otherwise.} \end{cases}$$

Definition 3. (Lagrange dual problem) The **dual problem** associated with (1) is the optimization problem

maximize $g(\lambda, \nu)$ subject to $\lambda \succeq 0.$ (3)

We say (λ^*, ν^*) are **dual optimal** is they are optimal for the above problem.

2.1 Duality Gap

Definition 4. Let d^* denote the optimal value of the dual problem (3). We call $p^* - d^*$ the **optimal** duality gap.

In general we have $d^* \leq p^*$; this is called **weak duality**; when $d^* = p^*$, we have strong duality.

Slater's Condition

Slater's condition is a sufficient condition for strong duality to hold for a convex optimization problem: if the primal problem (1) is convex, and if x is in the **relative interior** of D ($x \in \text{relint}D$), that is

$$f_i(x) < 0 \text{ for } i = 1, ..., m,$$

 $h_i(x) = 0 \text{ for } i = 1, ..., p,$

then $p^* = d^*$. In this case we say "x is strictly feasible."

From (2), we see that (λ, ν) provides a **proof** or **certificate** that $p^* \ge g(\lambda, \nu)$.

Suppose now that $p^* = d^*$. Then if x^* minimizes $f_0(x)$, we have

$$f_{0}(x^{*}) = g(\lambda^{*}, \nu^{*})$$

$$= \inf_{x} \left(f_{0}(x) + \sum_{i=1}^{m} \lambda_{i}^{*} f_{i}(x) + \sum_{i=1}^{p} \nu_{i}^{*} h_{i}(x) \right)$$

$$\leq f_{0}(x^{*}) + \sum_{i=1}^{m} \lambda_{i}^{*} f_{i}(x^{*}) + \sum_{i=1}^{p} \nu_{i}^{*} h_{i}(x^{*})$$

$$\leq f_{0}(x^{*})$$

by the equality and inequality constraints. This means that x^* minimizes $L(x, \lambda^*, \nu^*)$ over x, and that

$$\sum_{i=1}^{m} \lambda_i^* f_i\left(x^*\right) = 0.$$

Hence $\lambda_i^* f_i(x^*) = 0$ for i = 1, ..., m. This is called **complementary slackness**. In more detail,

$$\lambda_i^* > 0 \implies f_i(x^*) = 0 \quad \text{or} \quad f_i(x^*) < 0 \implies \lambda_i^* = 0.$$

2.2 KKT Conditions

Let f_0, \ldots, f_m and h_1, \ldots, h_m be differentiable functions. Let x^* and (λ^*, ν^*) be the primal-dual optimal points. We know x^* minimizes $L(x, \lambda^*, \nu^*)$ over x. Thus

$$\nabla f_0(x^*) + \sum_{i=1}^m \lambda_i^* \nabla f_i(x^*) + \sum_{i=1}^p \nu_i^* \nabla h_i(x^*) = 0.$$

This condition, along with the conditions

$$\begin{cases} f_i(x^*) \le 0, & i = 1, \dots, m \\ h_i(x^*) = 0, & i = 1, \dots, p \\ \lambda_i^* \ge 0, & i = 1, \dots, m \\ \lambda_i^* f_i(x^*) = 0, & i = 1, \dots, m \end{cases}$$

are called the KKT (Karush-Kahn-Tucker) Conditions.

For **convex** optimization problems with **differentiable** objective and constraints satisfying **Slater's** condition, the **KKT** conditions are **necessary** and **sufficient** for optimality.

3 Extension to Generalized Inequalities

We now consider the optimization problem

minimize
$$f_0(x)$$
 subject to
$$\begin{cases} f_i(x) \preceq_{K_i} 0, & i = 1, \dots, m \\ h_i(x) = 0, & i = 1, \dots, p \end{cases}$$

where $K_i \subset \mathbb{R}^{K_i}$ are proper **cones**. Here $x \preceq_K y \iff y - x \in K$.

Definition 5. A cone is a set invariant under multiplication by nonnegative scalars. That is, if $x \in K$ and $\lambda \ge 0$ then $\lambda x \in K$.

Example 2. Here are some examples of cones:

1. Quadratic Cone:

$$K_q = \{z \in \mathbb{R}^m | \| (z_2, \dots, z_m) \|_2 \le z_1 \}.$$

2. Positive Orthant:

$$K_{+} = \{ z \in \mathbb{R}^{m} | z_{1} \ge 0, z_{2} \ge 0, \dots, z_{m} \ge 0 \}.$$

3. Positive-semidefinite cone:

$$K_{S_+} = \left\{ X \in \mathbb{S}^{n \times n} | X \succeq 0 \right\}.$$

Definition 6. The dual of a cone K in a linear space X with topological dual space X^* is the set

$$Dual(K) = \{ z \in X^* | \langle y, x \rangle \ge 0 \, \forall x \in K \},\$$

where $\langle y, x \rangle$ is the duality pairing between X and X^* .

In the case where $K \subset \mathbb{R}^n$, the dual of K is

$$Dual(K) = \left\{ y \in \mathbb{R}^n | y^T x \ge 0 \, \forall x \in K \right\}.$$

Lemma 2. The positive orthant cone K_+ in \mathbb{R}^m is equal to its dual cone.

Lemma 3. The positive-semidefinite cone K_{S_+} in $\mathbb{S}^{n \times n}$ is equal to its dual cone.

4 Homework

Prove Lemmata 1,2, and 3.