Lecture X - Mar 24, 2015
Inst. Aditya Viswanathan

1 Introduction

Consider an optimization problem in standard form:

$$
\min _{x \in \mathbb{R}^{n}} f_{0}(x) \quad \text { subject to } \quad \begin{cases}f_{i}(x) \leq 0, & i=1, \ldots, m \tag{1}\\ h_{i}(x)=0, & i=1, \ldots, p\end{cases}
$$

We define the domain D of problem (1) as the intersection of the domains of all constraints. That is,

$$
D=\left(\bigcap_{i=1}^{m} \operatorname{dom} f_{i}\right) \cap\left(\bigcap_{i=1}^{p} \operatorname{dom} h_{i}\right),
$$

We assume that D is non-empty, and denote by p^{*} the optimal value of problem (1).

2 Duality

Definition 1. The Lagrangian associated with (1) is the function $L: \mathbb{R}^{n} \times \mathbb{R}^{m} \times \mathbb{R}^{p} \rightarrow \mathbb{R}$ defined by

$$
L(x, \lambda, \nu)=f_{0}(x)+\sum_{i=1}^{m} \lambda_{i} f_{i}(x)+\sum_{i=1}^{p} \nu_{i} h_{i}(x),
$$

with dom $L=D \times \mathbb{R}^{m} \times \mathbb{R}^{p}$. Here

$$
\lambda \in \mathbb{R}^{m}, \nu \in \mathbb{R}^{p}
$$

are called dual variables (or Lagrange multiplier vectors).
Definition 2. (Lagrange dual function) The dual function $g: \mathbb{R}^{m} \times \mathbb{R}^{p} \rightarrow \mathbb{R}$ is the minimum value of the Lagrangian over all x; that is,

$$
g(\lambda, \nu)=\inf _{x \in D} L(x, \lambda, \nu)=\inf _{x \in D}\left[f_{0}(x)+\sum_{i=1}^{m} \lambda_{i} f_{i}(x)+\sum_{i=1}^{p} \nu_{i} h_{i}(x)\right] .
$$

Note that the dual function is always concave, being the pointwise infimum of affine functions.
Lemma 1. The dual function provides a lower bound on the optimal value p^{*} for the optimization problem (1); that is,

$$
\begin{equation*}
g(\lambda, \nu) \leq p^{*} \tag{2}
\end{equation*}
$$

for all $\lambda \succeq 0$ and for all ν.

Remark. By $\lambda \succeq 0$ we mean $\lambda_{i} \geq 0$ for all $i=1, \ldots, m$.

For a pair (λ, ν) with $\lambda \succeq 0$ and $(\lambda, \nu) \in \operatorname{dom} g$, we say (λ, ν) are dual feasible.

Example 1. A simple linear program

Recall the optimization problem

$$
\min _{x \in \mathbb{R}^{n}} c^{T} x \quad \text { subject to } \quad A x=b, x \succeq 0
$$

The Lagrangian associated with this problem is

$$
\begin{aligned}
L(x, \lambda, \nu) & =c^{T} x-\sum_{i=1}^{\infty} \lambda_{i} x_{i}+\nu^{T}(A x-b) \\
& =-b^{T} \nu+\left(c+A^{T} \nu-\lambda\right)^{T} x
\end{aligned}
$$

Here we have set the inequality constraints as $f_{i}(x)=-x_{i}$, for $i=1, \ldots, m$.
The dual function associated with this problem is

$$
g(\lambda, \nu)=\inf _{x} L(x, \lambda, \nu)= \begin{cases}-b^{T} \nu, & \text { if } A^{T} \nu-\lambda+c=0 \\ -\infty, & \text { otherwise }\end{cases}
$$

Definition 3. (Lagrange dual problem) The dual problem associated with (1) is the optimization problem

$$
\begin{equation*}
\text { maximize } g(\lambda, \nu) \quad \text { subject to } \quad \lambda \succeq 0 \text {. } \tag{3}
\end{equation*}
$$

We say $\left(\lambda^{*}, \nu^{*}\right)$ are dual optimal is they are optimal for the above problem.

2.1 Duality Gap

Definition 4. Let d^{*} denote the optimal value of the dual problem (3). We call $p^{*}-d^{*}$ the optimal duality gap.

In general we have $d^{*} \leq p^{*}$; this is called weak duality; when $d^{*}=p^{*}$, we have strong duality.

Slater's Condition

Slater's condition is a sufficient condition for strong duality to hold for a convex optimization problem: if the primal problem (1) is convex, and if x is in the relative interior of $D(x \in \operatorname{relint} D)$, that is

$$
\begin{aligned}
f_{i}(x) & <0 \text { for } i=1, \ldots, m \\
h_{i}(x) & =0 \text { for } i=1, \ldots, p
\end{aligned}
$$

then $p^{*}=d^{*}$. In this case we say " x is strictly feasible."
From (2), we see that (λ, ν) provides a proof or certificate that $p^{*} \geq g(\lambda, \nu)$.

Suppose now that $p^{*}=d^{*}$. Then if x^{*} minimizes $f_{0}(x)$, we have

$$
\begin{aligned}
f_{0}\left(x^{*}\right) & =g\left(\lambda^{*}, \nu^{*}\right) \\
& =\inf _{x}\left(f_{0}(x)+\sum_{i=1}^{m} \lambda_{i}^{*} f_{i}(x)+\sum_{i=1}^{p} \nu_{i}^{*} h_{i}(x)\right) \\
& \leq f_{0}\left(x^{*}\right)+\sum_{i=1}^{m} \lambda_{i}^{*} f_{i}\left(x^{*}\right)+\sum_{i=1}^{p} \nu_{i}^{*} h_{i}\left(x^{*}\right) \\
& \leq f_{0}\left(x^{*}\right)
\end{aligned}
$$

by the equality and inequality constraints. This means that x^{*} minimizes $L\left(x, \lambda^{*}, \nu^{*}\right)$ over x, and that

$$
\sum_{i=1}^{m} \lambda_{i}^{*} f_{i}\left(x^{*}\right)=0
$$

Hence $\lambda_{i}^{*} f_{i}\left(x^{*}\right)=0$ for $i=1, \ldots, m$. This is called complementary slackness. In more detail,

$$
\lambda_{i}^{*}>0 \Longrightarrow f_{i}\left(x^{*}\right)=0 \quad \text { or } \quad f_{i}\left(x^{*}\right)<0 \Longrightarrow \lambda_{i}^{*}=0 .
$$

2.2 KKT Conditions

Let f_{0}, \ldots, f_{m} and h_{1}, \ldots, h_{m} be differentiable functions. Let x^{*} and (λ^{*}, ν^{*}) be the primal-dual optimal points. We know x^{*} minimizes $L\left(x, \lambda^{*}, \nu^{*}\right)$ over x. Thus

$$
\nabla f_{0}\left(x^{*}\right)+\sum_{i=1}^{m} \lambda_{i}^{*} \nabla f_{i}\left(x^{*}\right)+\sum_{i=1}^{p} \nu_{i}^{*} \nabla h_{i}\left(x^{*}\right)=0
$$

This condition, along with the conditions

$$
\begin{cases}f_{i}\left(x^{*}\right) \leq 0, & i=1, \ldots, m \\ h_{i}\left(x^{*}\right)=0, & i=1, \ldots, p \\ \lambda_{i}^{*} \geq 0, & i=1, \ldots, m \\ \lambda_{i}^{*} f_{i}\left(x^{*}\right)=0, & i=1, \ldots, m\end{cases}
$$

are called the KKT (Karush-Kahn-Tucker) Conditions.
For convex optimization problems with differentiable objective and constraints satisfying Slater's condition, the KKT conditions are necessary and sufficient for optimality.

3 Extension to Generalized Inequalities

We now consider the optimization problem

$$
\text { minimize } f_{0}(x) \quad \text { subject to } \quad \begin{cases}f_{i}(x) \preceq_{K_{i}} 0, & i=1, \ldots, m \\ h_{i}(x)=0, & i=1, \ldots, p\end{cases}
$$

where $K_{i} \subset \mathbb{R}^{K_{i}}$ are proper cones. Here $x \preceq_{K} y \Longleftrightarrow y-x \in K$.

Definition 5. A cone is a set invariant under multiplication by nonnegative scalars. That is, if $x \in K$ and $\lambda \geq 0$ then $\lambda x \in K$.

Example 2. Here are some examples of cones:

1. Quadratic Cone:

$$
K_{q}=\left\{z \in \mathbb{R}^{m} \mid\left\|\left(z_{2}, \ldots, z_{m}\right)\right\|_{2} \leq z_{1}\right\}
$$

2. Positive Orthant:

$$
K_{+}=\left\{z \in \mathbb{R}^{m} \mid z_{1} \geq 0, z_{2} \geq 0, \ldots, z_{m} \geq 0\right\}
$$

3. Positive-semidefinite cone:

$$
K_{S_{+}}=\left\{X \in \mathbb{S}^{n \times n} \mid X \succeq 0\right\}
$$

Definition 6. The dual of a cone K in a linear space X with topological dual space X^{*} is the set

$$
\operatorname{Dual}(K)=\left\{z \in X^{*} \mid\langle y, x\rangle \geq 0 \forall x \in K\right\}
$$

where $\langle y, x\rangle$ is the duality pairing between X and X^{*}.
In the case where $K \subset \mathbb{R}^{n}$, the dual of K is

$$
\operatorname{Dual}(K)=\left\{y \in \mathbb{R}^{n} \mid y^{T} x \geq 0 \forall x \in K\right\} .
$$

Lemma 2. The positive orthant cone K_{+}in \mathbb{R}^{m} is equal to its dual cone.
Lemma 3. The positive-semidefinite cone $K_{S_{+}}$in $\mathbb{S}^{n \times n}$ is equal to its dual cone.

4 Homework

Prove Lemmata 1,2, and 3.

