1 Overview

In the last lecture we proved the JohnsonLindenstrauss lemma (J-L lemma) implies the RIP property

In this lecture we will discuss the lower bound on number of rows of a RIP matrices and compare this to the matrix the J-L lemma gives us.

2 Lecture

Lemma 1. Given $K, N \in \mathbb{N}, K<N$.
Then $\exists n \geq\left(\frac{N}{4 K}\right)^{K / 2}$ subsets $S_{1}, S_{2}, \ldots, S_{n} \subseteq[N]$ such that

$$
\left\{\begin{array}{l}
\left|S_{j}\right|=K, \forall j \in[n] \\
\left|S_{i} \cap S_{j}\right|<\frac{K}{2}, \forall i \neq j
\end{array}\right.
$$

Proof: Assume $K<\frac{N}{4}$
Let $C=\{S \subseteq[N]|K=|S|\}$
Pick $S_{1} \in C$
Let $C_{1} \subseteq C: C_{1}=\left\{S \in C\left|\frac{K}{2} \leq\left|S \cap S_{1}\right|\right\}\right.$ i.e. things that looks like S_{1}
$\left|C_{1}\right|=\sum_{S=\lceil K / 2\rceil}^{K}\binom{K}{S}\binom{N-K}{K-S}$
$\leq 2^{K} \max _{\left\lceil\frac{K}{2}\right\rceil \leq S \leq K}\binom{N-K}{K-S}$, by sum of binomial $\leq 2^{K}$
$=2^{K}\binom{N-K}{\lfloor K / 2\rfloor}$ because N-K is small, so it maximize when K-S maximize
We will pick $S_{2}, S_{3}, \ldots, S_{n}$ using the following algorithm:
Pick: S_{1}, C_{1}, C
$n \leftarrow 1$
While : $\left|C \backslash \bigcup_{l=1}^{n} C_{l}\right|>0$

- Choose : $S_{n+1} \in C \backslash \bigcup_{l=1}^{n} C_{l}$
- Set : $C_{n+1}=\left\{S \in C \backslash \bigcup_{l=1}^{n} C_{l}\left|\frac{K}{2} \leq\left|S \cap S_{n+1}\right|\right\}\right.$
$-\quad n \leftarrow n+1$
Note that by construction: $\left|S_{i} \cap S_{j}\right|<\frac{K}{2}, \forall i \neq j$
Algorithm stop when
$n \geq \frac{|C|}{\max _{1 \leq i \leq n}\left|C_{i}\right|} \geq \frac{\binom{N}{K}}{2^{K}\binom{N-K}{\lfloor K / 2\rfloor}} \geq\left(\frac{N}{4 K}\right)^{\frac{K}{2}}$ by expanding binomial coefficient

Theorem 1. Given $A \in \mathbb{R}^{m \times N}$
Condition for Basis Pursuit (BP), i.e. :
$\forall x \in \mathbb{R}^{N}$ with $\|x\|_{0} \leq 2 K, \forall z \in \mathbb{R}^{N}$ with $A z=$ Ax then $\|x\|_{1} \leq\|z\|_{1}$
Then
$m \geq \frac{K}{\ln 9} \ln \left(\frac{N}{4 K}\right)$
Proof: Consider $[x]=x+\operatorname{Ker}(A)$
associated with a norm: $\|[x]\|:=\inf _{v \in \operatorname{Ker}(A)}\|x-v\|_{1}$
Indentify (i.e., note the existence of the bijection) $y \in \operatorname{Ker}(A)^{\perp}$ with $[y]$
This bijection induces a norm in $\operatorname{Ker}(\mathrm{A}):\|y\|_{S}=\|[y]\|$
Suppose $\|x\|_{0} \leq 2 K$
Project x on $\operatorname{Ker}(A)^{\perp}$:

$$
\begin{aligned}
\left\|\prod_{\operatorname{Ker}(A)^{\perp}} x\right\|_{S} & =\left\|\left[\prod_{\operatorname{Ker}(A)^{\perp}} x\right]\right\| \\
& =\inf _{v \in \operatorname{Ker}(A)}\left\|\prod_{\operatorname{Ker}(A)^{\perp}} x-v\right\|_{1} \\
& =\inf _{v \in \operatorname{Ker}(A)}\|x-v\|_{1} \\
& =\|x\|_{1}
\end{aligned}
$$

The last equality is due to Basis Pursuit condition (note that $A(x-v)=A(x)$)

Let S_{j} be the subsets from lemma 1 :

$$
\left\{\begin{array}{l}
\left|S_{j}\right|=K, \forall j \in[n] \\
\left|S_{i} \cap S_{j}\right|<\frac{K}{2}, \forall i \neq j
\end{array}\right.
$$

Let y_{j} be vector in R^{N} such that:

$$
\left(y_{j}\right)_{l}=\left\{\begin{array}{l}
\frac{1}{K} \text { if } l \in S_{j} \\
0 \text { otherwise }
\end{array}\right.
$$

Note that $\left\|y_{j}\right\|_{0}=k$ and $\left\|y_{j}\right\|_{1}=1$
Define $x_{j}=\prod_{\operatorname{Ker}(A)^{\perp}} y_{j}$
Note:
$\left\|x_{j}\right\|_{S}=\left\|\prod_{K e r(A)^{\perp}} y_{j}\right\|_{S}=\left\|y_{j}\right\|_{1}=1$
$\left\|x_{j}-x_{l}\right\|_{S}=\left\|y_{j}-y_{l}\right\|_{1}>1$ since $K \leq\left\|y_{j}-y_{l}\right\|_{0} \leq 2 K$
Hence:

$$
\begin{aligned}
\left(\frac{N}{4 K}\right)^{\frac{K}{2}} & \leq n \quad \text { by lemma } 1 \\
& \leq P_{1}\left(\|\cdot\|_{S}-\text { ball in } \operatorname{Ker}(A)^{\perp}\right) \quad \text { since } x_{j} \text { can be a packing } \\
& \leq\left(1+\frac{2}{1}\right)^{\operatorname{rank}(A)} \\
& =3^{m}
\end{aligned}
$$

Take the \log of both side and we are done.

This theorem give us a lower bound on the number of rows, m, of matrices with RIP and NSP (null space property), which is in order of k . This means our random matrices from J-L lemma are pretty close to optimal as they are also in order of k .

