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1 Overview

In the previous two lectures we showed how the Johnson-Lindenstrauss lemma implies the RIP
(restricted isometery property), and discussed the lower bound on the number of rows of RIP
matrices.

In this lecture, and the one that follows, we consider the converse, i.e. we show that the RIP yields
J-L embeddings of sets.

2 Main Theorem

The goal is to prove the following theorem.

Theorem 1. Let P ⊆ RN with |P | = M . Suppose A ∈ Rm×N has a RIP constant ε2k (A) ≤ η
4

for some η, δ ∈ (0, 1) and k ≥ 16 ln
(
4M
δ

)
. Let ~ψ ∈ RN have independent, identically distributed

Bernoulli random entries (ψi = ±1 each with probability 1
2). Then

(1− η) ‖~x‖22 ≤
∥∥∥ADiag

(
~ψ
)
~x
∥∥∥2
2
≤ (1 + η) ‖~x‖22

for all ~x ∈ P , with probability at least 1− δ.

Remark 1. By Diag (~x) we mean the N×N diagonal matrix X, with Xi,i = xi, the ith component
of ~x.

We will need to prove a couple of lemmas first, before proving the main theorem above. The
difficulty with a direct approach is illustrated as follows.

Let A ∈ Rm×N , and Ã = A ·Diag
(
~ψ
)

. Then

Ã∗Ã = Diag
(
~ψ
)
A∗ADiag

(
~ψ
)
.

The main difficulty is that ~ψ shows up on both sides of this product, making it difficult to use
“independence” results.
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3 A couple of Lemmas

Lemma 1. (Decoupling) Let B ∈ RN×N be symmetric with zeros on its diagonal. Let ~ψ ∈ RN
be a vector of independent, mean zero random variables. If f : R→ R is a convex function, then

E := E
[
f
(
~ψ∗B~ψ

)]
≤ E

[
f
(

4~ψ∗ (B + Diag (~y)) ~ψ′
)]

where ~ψ′ is an independent copy of ~ψ, and ~y ∈ RN is arbitrary.

The proof of this wonderful lemma is due to the French mathematician Michel Talagrand.

Proof. Let ~δ ∈ [0, 1]N be a random vector with independent, identically distributed entries, such
that

δj =

{
1 with probability 1

2 ,

0 with probability 1
2 .

Then

E [δk (1− δi)] =
1

4
, j 6= k.

We have

E := E
[
f
(
~ψ∗B~ψ

)]
= E~ψ

f
4
∑
j 6=k

E~δ [δj (1− δk)]ψjBjkψk

 ,
where we have used the fact that Bk,k = 0 for all k = 1, . . . , N .

By convexity of f and Jensen’s Inequality, we get

E ≤ E~ψ
E~δ

f
4
∑
j 6=k

δj (1− δk)ψjBjkψk


= E~δE~ψ

f
4
∑
j 6=k

δj (1− δk)ψjBjkψk

 ,
where the last equality follows by Fubini’s theorem.

Now let
σ
(
~δ
)

:= {j ∈ [N ] | δj = 1} .

Then

E ≤ E~δE~ψ

f
4

∑
j∈σ(~δ)

∑
k 6∈σ(~δ)

ψjBjkψk


 .

Notice that ψj and ψk are now (in the sum) independent of one another! So we may write

E ≤ E~δE~ψ
E~ψ′

f
4

∑
j∈σ(~δ)

∑
k 6∈σ(~δ)

ψjBjkψ
′
k



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where ~ψ′ is an independent copy of ~ψ.

The last inequality implies the existence of some ~δ0 ∈ [0, 1]N such that σ := σ
(
~δ0

)
satisfies

E ≤ E~ψ
E~ψ′

f
4

∑
j∈σ(~δ)

∑
k 6∈σ(~δ)

ψjBjkψ
′
k




= E ~ψ|
σ

E ~ψ′|
σ̄

f
4
∑
j∈σ

∑
k 6∈σ

ψjBjkψ
′
k +

∑
k∈σ

ψjBjkE ~ψ′|
σ

[
ψ′k
]

+4
∑
j 6∈σ

E ~ψ|
σ̄

[ψj ]
N∑
k=1

ψ′kBjk

 .
This step is justified since E ~ψ|

σ̄

[ψj ] = E ~ψ′|
σ

[ψ′k] = 0 by the assumption on ~ψ and ~ψ′.

We are thus allowed to add yk to every Bk,k term that appears in the last two sums; that is

E ≤ E

f
4

N∑
j,k=1

ψj

(
Bjk + Diag (~y)jk

)
ψ′k


= E

[
f
(

4~ψ∗ (B + Diag (~y)) ~ψ′
)]
,

where, once again, the inequality follows from the convexity of f and Jensen’s Inequality.

Lemma 2. (Rademacher Chaos) Let B ∈ RN×N be symmetric with zeros on its diagonal, and
let ~ψ ∈ RN have independent, identically distributed Bernoulli entries. Then for t > 0, we have

P
(∣∣∣~ψ∗B~ψ∣∣∣ ≥ t) ≤ 2 exp

(
−min

{
3t2

128 ‖B‖2F
,

t

32 ‖B‖2

})

=

2 exp
(
−3t2

128‖B‖2F

)
, if 0 < t ≤ 4

3
‖B‖2F
‖B‖2

;

2 exp
(
− t

32‖B‖2

)
, if t > 4

3
‖B‖2F
‖B‖2

.

Remark 2. Recall that

‖B‖2 = max
~x∈RN

‖B~x‖2
‖~x‖2

= σ1 (B) ,

‖B‖2F =

N∑
i,j=1

|Bij |2 =

N∑
j=1

σ2j (B) ,

where σ1 ≥ σ2 ≥ · · · ≥ σN are the singular values of B.

3


