Group Testing: From Syphilis to Sparse Fourier Transforms

Mark Iwen

Michigan State University

November 6, 2013

M.A. Iwen (MSU)

Group Testing

November 6, 2013 1 / 24

History of Group Testing

• Syphilis Testing [Dorfman 1943]

• Mix many recruits' blood samples together and test the mixture!

History of Group Testing

Syphilis Testing [Dorfman 1943]

• Mix many recruits' blood samples together and test the mixture!

イロト イポト イラト イラ

History of Group Testing

• Syphilis Testing [Dorfman 1943]

• Mix many recruits' blood samples together and test the mixture!

• • • • • • • • • • • • •

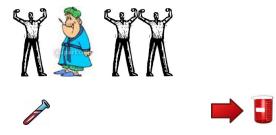
• Line up our recruits.

• Let's see how testing turns out IF WE KNOW WHO IS SICK

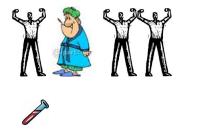
- Line up our recruits.
- Let's see how testing turns out IF WE KNOW WHO IS SICK

- Line up our recruits.
- Let's see how testing turns out IF WE KNOW WHO IS SICK

- Line up our recruits.
- Let's see how testing turns out IF WE KNOW WHO IS SICK

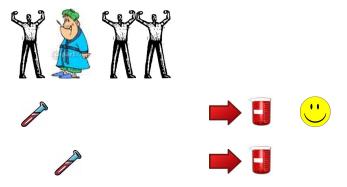


- Line up our recruits.
- Let's see how testing turns out IF WE KNOW WHO IS SICK

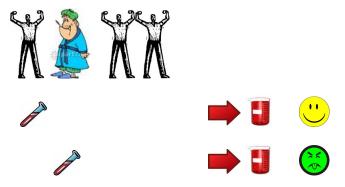


11

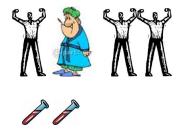
- Line up our recruits.
- Let's see how testing turns out IF WE KNOW WHO IS SICK



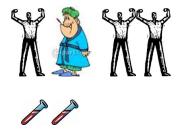
- Line up our recruits.
- Let's see how testing turns out IF WE KNOW WHO IS SICK



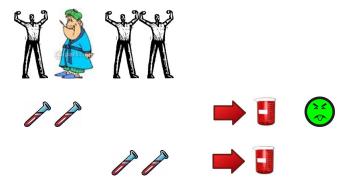
- Line up our recruits.
- Let's see how testing turns out IF WE KNOW WHO IS SICK



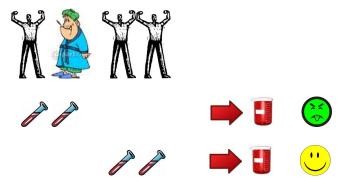
- Line up our recruits.
- Let's see how testing turns out IF WE KNOW WHO IS SICK



- Line up our recruits.
- Let's see how testing turns out IF WE KNOW WHO IS SICK



- Line up our recruits.
- Let's see how testing turns out IF WE KNOW WHO IS SICK

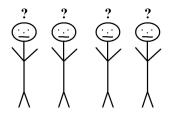


• Line up our recruits.

• We will use TWO TESTS to find the ONE sick person.

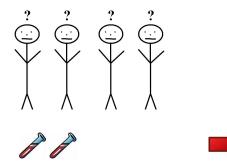
- Line up our recruits.
- We will use TWO TESTS to find the ONE sick person.

- Line up our recruits.
- We will use TWO TESTS to find the ONE sick person.

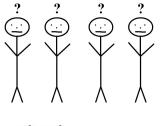


- N

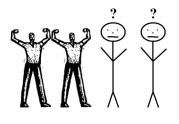
- Line up our recruits.
- We will use TWO TESTS to find the ONE sick person.



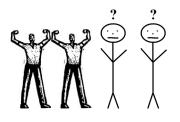
- Line up our recruits.
- We will use TWO TESTS to find the ONE sick person.

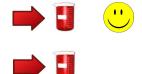


- Line up our recruits.
- We will use TWO TESTS to find the ONE sick person.



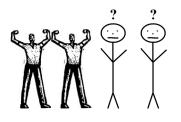
- Line up our recruits.
- We will use TWO TESTS to find the ONE sick person.





• • • • • • • • • • • • •

- Line up our recruits.
- We will use TWO TESTS to find the ONE sick person.



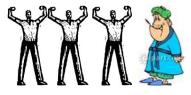
4 D K 4 B K 4 B K 4

- Line up our recruits.
- We will use TWO TESTS to find the ONE sick person.



イロト イポト イラト イラ

- Line up our recruits.
- We will use TWO TESTS to find the ONE sick person.
- Since we know there is one sick person, it must be the last one!



< D > < P > < E > < E</p>

Line up the four samples.

- 2 Mix tests from the first two samples together and test them.
- IF this first test is , THEN these first two samples are healthy. OTHERWISE, if the test is , the last two samples are healthy.

WE SHOULD NOW ONLY HAVE TWO UNKNOWN SAMPLES!

- Pick one of the two remaining unknown samples and test it.
- IF this test is , THEN the sample we didn't test is sick. OTHERWISE, if the test is , the sample we did test is sick.

- Line up the four samples.
- In Mix tests from the first two samples together and test them.
- IF this first test is , THEN these first two samples are healthy. OTHERWISE, if the test is , the last two samples are healthy.

WE SHOULD NOW ONLY HAVE TWO UNKNOWN SAMPLES!

- Pick one of the two remaining unknown samples and test it.
- IF this test is , THEN the sample we didn't test is sick. OTHERWISE, if the test is , the sample we did test is sick.

- Line up the four samples.
- In Mix tests from the first two samples together and test them.
- IF this first test is , THEN these first two samples are healthy. OTHERWISE, if the test is , the last two samples are healthy.

WE SHOULD NOW ONLY HAVE TWO UNKNOWN SAMPLES!

- Pick one of the two remaining unknown samples and test it.
- IF this test is , THEN the sample we didn't test is sick. OTHERWISE, if the test is , the sample we did test is sick.

- Line up the four samples.
- In Mix tests from the first two samples together and test them.
- IF this first test is , THEN these first two samples are healthy. OTHERWISE, if the test is , the last two samples are healthy.

WE SHOULD NOW ONLY HAVE TWO UNKNOWN SAMPLES!

- Pick one of the two remaining unknown samples and test it.
- IF this test is , THEN the sample we didn't test is sick. OTHERWISE, if the test is , the sample we did test is sick.

4 (1) × 4 (2) × 4 (2) × 4 (2) ×

- Line up the four samples.
- In Mix tests from the first two samples together and test them.
- IF this first test is , THEN these first two samples are healthy. OTHERWISE, if the test is , the last two samples are healthy.

WE SHOULD NOW ONLY HAVE TWO UNKNOWN SAMPLES!

- 9 Pick one of the two remaining unknown samples and test it.
- IF this test is , THEN the sample we didn't test is sick. OTHERWISE, if the test is , the sample we did test is sick.

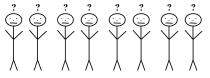
4 D K 4 B K 4 B K 4 B K

- Line up the four samples.
- In the set of the s
- IF this first test is , THEN these first two samples are healthy. OTHERWISE, if the test is , the last two samples are healthy.

WE SHOULD NOW ONLY HAVE TWO UNKNOWN SAMPLES!

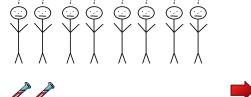
- 9 Pick one of the two remaining unknown samples and test it.
- IF this test is ⁽¹⁾, THEN the sample we didn't test is sick. OTHERWISE, if the test is ⁽²⁾, the sample we did test is sick.

What if we know we have TWO sick recruits?



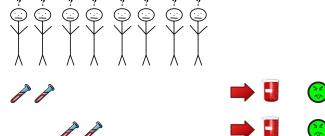
4 3 > 4 3

What if we know we have TWO sick recruits?

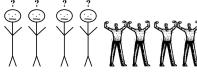


4 3 > 4 3

What if we know we have TWO sick recruits?



What if we know we have TWO sick recruits?



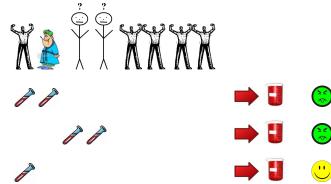
Generalization

We Can Also Find More Hidden Sick Samples...

SIJC.

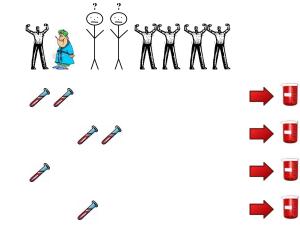
What if we know we have TWO sick recruits?

What if we know we have TWO sick recruits?



< ロ > < 同 > < 回 > < 回 >

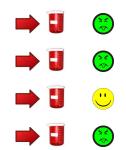
What if we know we have TWO sick recruits?



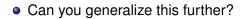
 $\mathbf{\mathbf{U}}$

< ロ > < 同 > < 回 > < 回 >

What if we know we have TWO sick recruits?



What if we know we have TWO sick recruits?



M.A.	lwen i	(MSU)
		(

3

 $\mathbf{...}$

< ロ > < 同 > < 回 > < 回 >

Encode the problem in a binary array

• Find the nonzero entries by testing subsets of the array

- Boolean $K \times N$ measurement matrix \mathcal{M}
- Boolean array $\mathbf{a} \in \{0, 1\}^N$ containing k ones
- All arithmetic Boolean (+ = OR, * = AND)
- Identify the location of k ones using $\mathbf{y} = \mathcal{M}\mathbf{a}$ measurements
- How small can we make K and still recover a using y?

< ロ > < 同 > < 回 > < 回 >

• Encode the problem in a binary array

• Find the nonzero entries by testing subsets of the array

- Boolean $K \times N$ measurement matrix \mathcal{M}
- Boolean array $\mathbf{a} \in \{0, 1\}^N$ containing k ones
- All arithmetic Boolean (+ = OR, * = AND)
- Identify the location of k ones using $\mathbf{y} = \mathcal{M}\mathbf{a}$ measurements
- How small can we make K and still recover a using y?

Group Testing

• Encode the problem in a binary array

• Find the nonzero entries by testing subsets of the array

- Boolean $K \times N$ measurement matrix \mathcal{M}
- Boolean array $\mathbf{a} \in \{0, 1\}^N$ containing k ones
- All arithmetic Boolean (+ = OR, * = AND)
- Identify the location of k ones using $\mathbf{y} = \mathcal{M}\mathbf{a}$ measurements
- How small can we make K and still recover a using y?

• Encode the problem in a binary array

- Boolean $K \times N$ measurement matrix \mathcal{M}
- Boolean array $\mathbf{a} \in \{0, 1\}^N$ containing k ones
- All arithmetic Boolean (+ = OR, * = AND)
- Identify the location of k ones using $\mathbf{y} = \mathcal{M}\mathbf{a}$ measurements
- How small can we make K and still recover a using y?

- Encode the problem in a binary array
- Find the nonzero entries by testing subsets of the array

- Boolean $K \times N$ measurement matrix \mathcal{M}
- Boolean array $\mathbf{a} \in \{0, 1\}^N$ containing k ones
- All arithmetic Boolean (+ = OR, * = AND)
- Identify the location of k ones using $\mathbf{y} = \mathcal{M}\mathbf{a}$ measurements
- How small can we make K and still recover a using y?

- Encode the problem in a binary array
- Find the nonzero entries by testing subsets of the array

- Boolean $K \times N$ measurement matrix \mathcal{M}
- Boolean array $\mathbf{a} \in \{0, 1\}^N$ containing k ones
- All arithmetic Boolean (+ = OR, * = AND)
- Identify the location of k ones using $\mathbf{y} = \mathcal{M}\mathbf{a}$ measurements
- How small can we make K and still recover a using y?

(B)

- Encode the problem in a binary array
- Find the nonzero entries by testing subsets of the array

- Boolean $K \times N$ measurement matrix \mathcal{M}
- Boolean array $\mathbf{a} \in \{0, 1\}^N$ containing k ones
- All arithmetic Boolean (+ = OR, * = AND)
- Identify the location of k ones using $\mathbf{y} = \mathcal{M}\mathbf{a}$ measurements
- How small can we make K and still recover **a** using **y**?

(B)

A D b 4 A b

Adaptive Group Testing

- What if we can adaptively sample **a** ∈ {0,1}^N several times, how many tests do we need to find its k (or fewer) nonzero entries?
- ANSWER: We can use at most log(N) matrices with at most 2k + 1 rows each! The total number of inner products is only O(k log N)!

< ロ > < 同 > < 回 > < 回 >

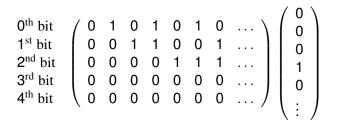
Adaptive Group Testing

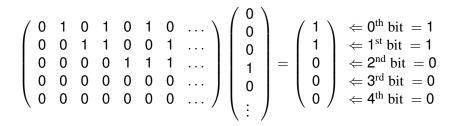
- What if we can adaptively sample **a** ∈ {0,1}^N several times, how many tests do we need to find its k (or fewer) nonzero entries?
- ANSWER: We can use at most log(N) matrices with at most 2k + 1 rows each! The total number of inner products is only O(k log N)!

4 D K 4 B K 4 B K 4 B K

• \mathcal{M} is 5 × 30, **a** contains 1 nonzero entry.

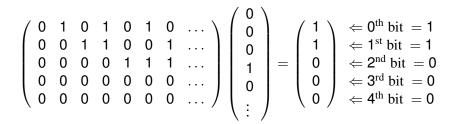
• \mathcal{M} is 5 \times 30, **a** contains 1 nonzero entry.





Recovery is simple: The result is the position of 1 in binary.

• QUIZ: Can we do better if we let our measurement matrix contains arbitrarily large integers?



Recovery is simple: The result is the position of 1 in binary.

 QUIZ: Can we do better if we let our measurement matrix contains arbitrarily large integers?

$$\begin{pmatrix} 0 & 1 & 0 & 1 & 0 & 1 & 0 & \dots \\ 0 & 0 & 1 & 1 & 0 & 0 & 1 & \dots \\ 0 & 0 & 0 & 0 & 1 & 1 & 1 & \dots \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & \dots \\ \end{pmatrix} \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \\ 0 \\ \vdots \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ 0 \\ 0 \\ 0 \end{pmatrix} \stackrel{\leftarrow}{=} \begin{array}{l} 4^{th} \text{ bit } = 1 \\ e^{2^{th}} \text{ bit } = 1 \\ e^{2^{th}} \text{ bit } = 0 \\ e^{3^{th}} \text{ bit } = 0 \\ e^{4^{th}} \text{ bit } = 0 \\ e^{4^{th}} \text{ bit } = 0 \end{array}$$

• Recovery is simple: The result is the position of 1 in binary.

• QUIZ: Can we do better if we let our measurement matrix contains arbitrarily large integers?

$$\left(\begin{array}{cccccccccc} 0 & 1 & 2 & 3 & 4 & 5 & 6 & \dots \end{array}\right) \left(\begin{array}{c} 0 \\ 0 \\ 0 \\ 1 \\ 0 \\ \vdots \end{array}\right) = 3$$

- Recovery is simple: The result is the position of 1 in binary.
- QUIZ: Can we do better if we let our measurement matrix contains arbitrarily large integers?
- YES!!!

Measurement Matrix Construction

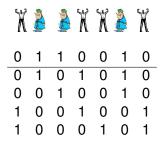
A binary matrix \mathcal{M} is *k*-strongly selective if for any column, **x**, and subset of columns containing at most *k* elements, *X*, there exists a row in \mathcal{M} with a 1 in column **x** and zeros in all of the other $X - \{\mathbf{x}\}$ columns.

Measurement Matrix Construction

A binary matrix \mathcal{M} is *k*-strongly selective if for any column, **x**, and subset of columns containing at most *k* elements, *X*, there exists a row in \mathcal{M} with a 1 in column **x** and zeros in all of the other $X - \{\mathbf{x}\}$ columns.

Measurement Matrix Construction

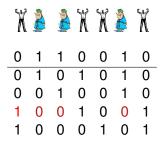
A binary matrix \mathcal{M} is *k*-strongly selective if for any column, **x**, and subset of columns containing at most *k* elements, *X*, there exists a row in \mathcal{M} with a 1 in column **x** and zeros in all of the other $X - \{\mathbf{x}\}$ columns.



BAR 4 BA

Measurement Matrix Construction

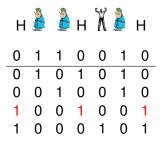
A binary matrix \mathcal{M} is *k*-strongly selective if for any column, **x**, and subset of columns containing at most *k* elements, *X*, there exists a row in \mathcal{M} with a 1 in column **x** and zeros in all of the other $X - \{\mathbf{x}\}$ columns.



BAR 4 BA

Measurement Matrix Construction

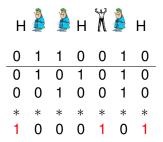
A binary matrix \mathcal{M} is *k*-strongly selective if for any column, **x**, and subset of columns containing at most *k* elements, *X*, there exists a row in \mathcal{M} with a 1 in column **x** and zeros in all of the other $X - \{\mathbf{x}\}$ columns.



モトイモト

Measurement Matrix Construction

A binary matrix \mathcal{M} is *k*-strongly selective if for any column, **x**, and subset of columns containing at most *k* elements, *X*, there exists a row in \mathcal{M} with a 1 in column **x** and zeros in all of the other $X - \{\mathbf{x}\}$ columns.



B N A **B** N

Measurement Matrix Construction

A binary matrix \mathcal{M} is *k*-strongly selective if for any column, **x**, and subset of columns containing at most *k* elements, *X*, there exists a row in \mathcal{M} with a 1 in column **x** and zeros in all of the other $X - \{\mathbf{x}\}$ columns.

4 E N 4 E N

Measurement Matrix Construction

A binary matrix \mathcal{M} is *k*-strongly selective if for any column, **x**, and subset of columns containing at most *k* elements, *X*, there exists a row in \mathcal{M} with a 1 in column **x** and zeros in all of the other $X - \{\mathbf{x}\}$ columns.

• Simple Recovery: For each *k*-strongly selective test that evaluates to a 0 (i.e., All Healthy)...

- A TE N - A TE N

Measurement Matrix Construction

A binary matrix \mathcal{M} is *k*-strongly selective if for any column, **x**, and subset of columns containing at most *k* elements, *X*, there exists a row in \mathcal{M} with a 1 in column **x** and zeros in all of the other $X - \{\mathbf{x}\}$ columns.

- Simple Recovery: For each *k*-strongly selective test that evaluates to a 0 (i.e., All Healthy)...
- Mark all individuals tested in that test as Healthy.

- A TE N - A TE N

Measurement Matrix Construction

A binary matrix \mathcal{M} is *k*-strongly selective if for any column, **x**, and subset of columns containing at most *k* elements, *X*, there exists a row in \mathcal{M} with a 1 in column **x** and zeros in all of the other $X - \{\mathbf{x}\}$ columns.

- Simple Recovery: For each *k*-strongly selective test that evaluates to a 0 (i.e., All Healthy)...
- Mark all individuals tested in that test as Healthy.
- If there are at most k sick individuals, we will find them all!

Theorem 1

Let $\mathbf{a} \in \{0, 1\}^N$ be a binary vector containing k nonzero entries. Furthermore, let \mathcal{M} be a k-strongly selective binary matrix. Then, the positions of all k nonzero entries in \mathbf{a} can be recovered using only the result of $\mathcal{M}\mathbf{a}$.

Theorem 2

There exist explicitly constructible $(\min\{k^2 \cdot \log N, N\}) \times N$ *k*-strongly selective binary matrices. And, they are optimal in the number of rows.^{*a*}

^aSee Porat and Rothschild's paper "Explicit Non-Adaptive Combinatorial Group Testing Schemes".

Theorem 1

Let $\mathbf{a} \in \{0, 1\}^N$ be a binary vector containing *k* nonzero entries. Furthermore, let \mathcal{M} be a *k*-strongly selective binary matrix. Then, the positions of all *k* nonzero entries in **a** can be recovered using only the result of $\mathcal{M}\mathbf{a}$.

Theorem 2

There exist explicitly constructible $(\min\{k^2 \cdot \log N, N\}) \times N$ *k*-strongly selective binary matrices. And, they are optimal in the number of rows.^{*a*}

^aSee Porat and Rothschild's paper "Explicit Non-Adaptive Combinatorial Group Testing Schemes".

Error Detection

Suppose we want to transmit a binary vector $\mathbf{a} \in \{0, 1\}^N$ through a noisy environment. How can we tell if we received the real message?

- Used for DVD, CD, and other media devices in your house!
- Basic Methods: Parity and Checksums
- A bit stronger: Use a strongly selective matrix!
 - Transmit (or read) both \boldsymbol{a} and $\mathcal{M}\boldsymbol{a}$
 - The receiver gets (or reads) $\mathbf{a}' = \mathbf{a} + \epsilon$
 - Check to see if $\mathcal{M}\mathbf{a} = \mathcal{M}\mathbf{a}'$

Error Detection

Suppose we want to transmit a binary vector $\mathbf{a} \in \{0, 1\}^N$ through a noisy environment. How can we tell if we received the real message?

- Used for DVD, CD, and other media devices in your house!
- Basic Methods: Parity and Checksums
- A bit stronger: Use a strongly selective matrix!
 - Transmit (or read) both a and Ma
 - The receiver gets (or reads) $\mathbf{a}' = \mathbf{a} + \epsilon$
 - Check to see if $\mathcal{M}\mathbf{a} = \mathcal{M}\mathbf{a}'$

Error Detection

Suppose we want to transmit a binary vector $\mathbf{a} \in \{0, 1\}^N$ through a noisy environment. How can we tell if we received the real message?

- Used for DVD, CD, and other media devices in your house!
- Basic Methods: Parity and Checksums
- A bit stronger: Use a strongly selective matrix!
 - Transmit (or read) both a and Ma
 - The receiver gets (or reads) $\mathbf{a}' = \mathbf{a} + \epsilon$
 - Check to see if $\mathcal{M}\mathbf{a} = \mathcal{M}\mathbf{a}'$

Error Detection

Suppose we want to transmit a binary vector $\mathbf{a} \in \{0, 1\}^N$ through a noisy environment. How can we tell if we received the real message?

- Used for DVD, CD, and other media devices in your house!
- Basic Methods: Parity and Checksums
- A bit stronger: Use a strongly selective matrix!
 - Transmit (or read) both \boldsymbol{a} and $\mathcal{M}\boldsymbol{a}$
 - The receiver gets (or reads) $\mathbf{a}' = \mathbf{a} + \epsilon$
 - Check to see if $\mathcal{M}\mathbf{a} = \mathcal{M}\mathbf{a}'$

Error Detection

Suppose we want to transmit a binary vector $\mathbf{a} \in \{0, 1\}^N$ through a noisy environment. How can we tell if we received the real message?

- Used for DVD, CD, and other media devices in your house!
- Basic Methods: Parity and Checksums
- A bit stronger: Use a strongly selective matrix!
 - Transmit (or read) both \boldsymbol{a} and $\mathcal{M}\boldsymbol{a}$
 - The receiver gets (or reads) $\mathbf{a}' = \mathbf{a} + \epsilon$

• Check to see if $\mathcal{M} a = \mathcal{M} a'$

- A TE N - A TE N

Group Testing - Another example

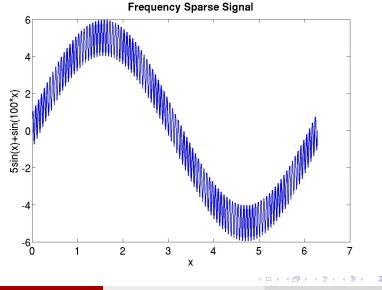
Error Detection

Suppose we want to transmit a binary vector $\mathbf{a} \in \{0, 1\}^N$ through a noisy environment. How can we tell if we received the real message?

- Used for DVD, CD, and other media devices in your house!
- Basic Methods: Parity and Checksums
- A bit stronger: Use a strongly selective matrix!
 - Transmit (or read) both \boldsymbol{a} and $\mathcal{M}\boldsymbol{a}$
 - The receiver gets (or reads) $\mathbf{a}' = \mathbf{a} + \epsilon$
 - Check to see if $\mathcal{M} \boldsymbol{a} = \mathcal{M} \boldsymbol{a}'$

4 E N 4 E N

The Goal: Sparse Signal Recovery



M.A. Iwen (MSU)

November 6, 2013 14 / 24

Where Do Fourier Sparse Signals Appear?

Motivated by

Applications involving wideband signals that are locally frequency sparse in time [see work by Baranuik, Duarte, Romberg, Tropp, ...].

Frequency hopping modulation schemes [Lamarr et al., 1941]

• The inverse: Medical Imaging,

Where Do Fourier Sparse Signals Appear?

Motivated by

Applications involving wideband signals that are locally frequency sparse in time [see work by Baranuik, Duarte, Romberg, Tropp, ...].

Frequency hopping modulation schemes [Lamarr et al., 1941]

• The inverse: Medical Imaging,

Where Do Fourier Sparse Signals Appear?

Motivated by

Applications involving wideband signals that are locally frequency sparse in time [see work by Baranuik, Duarte, Romberg, Tropp, ...].

Frequency hopping modulation schemes [Lamarr et al., 1941]

• The inverse: Medical Imaging,

M.A. Iwen (MSU)

Problem Setup

Inherent Sparsity Example: Angiography [Lustig et al., 2007]



M.A. Iwen (MSU)

Group Testing

November 6, 2013 16/24

Problem Setup

Recover $f : [0, 2\pi] \mapsto \mathbb{C}$ consisting of *k* trigonometric terms

$$f(x) = \sum_{j=1}^{k} C_j \cdot e^{x \cdot \omega_j \cdot i}, \ \Omega = \{\omega_1, \dots, \omega_k\} \subset \left[1 - \frac{N}{2}, \frac{N}{2}\right]$$

- Computationally efficient recovery...
- Use as few samples from *f* as possible.
- And, simple sampling patterns...
- We prefer strong recovery guarantees...

< ロ > < 同 > < 回 > < 回 >

Problem Setup

Recover $f : [0, 2\pi] \mapsto \mathbb{C}$ consisting of k trigonometric terms

$$f(x) = \sum_{j=1}^{k} C_j \cdot e^{x \cdot \omega_j \cdot i}, \ \Omega = \{\omega_1, \dots, \omega_k\} \subset \left[1 - \frac{N}{2}, \frac{N}{2}\right]$$

- Computationally efficient recovery...
- Use as few samples from f as possible.
- And, simple sampling patterns...
- We prefer strong recovery guarantees...

4 D K 4 B K 4 B K 4 B K

Standard Solution: Trigonometric Interpolation

Recover

$$f(x) = \sum_{j=1}^{k} C_{j} \cdot e^{x \cdot \omega_{j} \cdot i}, \ \Omega = \{\omega_{1}, \dots, \omega_{k}\} \subset \left[1 - \frac{N}{2}, \frac{N}{2}\right]$$

• Take N equally spaced samples

$$f(0), f(2\pi/N), \ldots, f(2\pi(N-1)/N)$$

- Take an FFT of the samples in $O(N \cdot \log N)$ time.
- Locate *k* non-zero Fourier coefficients.

Doesn't Take Sparsity Into Account..

M.A. Iwen (MSU)

Standard Solution: Trigonometric Interpolation

Recover

$$f(x) = \sum_{j=1}^{k} C_{j} \cdot e^{x \cdot \omega_{j} \cdot i}, \ \Omega = \{\omega_{1}, \dots, \omega_{k}\} \subset \left[1 - \frac{N}{2}, \frac{N}{2}\right]$$

• Take N equally spaced samples

$$f(0), f(2\pi/N), \ldots, f(2\pi(N-1)/N)$$

- Take an FFT of the samples in $O(N \cdot \log N)$ time.
- Locate k non-zero Fourier coefficients.

The Sec. 74

Standard Solution: Trigonometric Interpolation

Recover

$$f(x) = \sum_{j=1}^{k} C_j \cdot e^{x \cdot \omega_j \cdot i}, \ \Omega = \{\omega_1, \dots, \omega_k\} \subset \left[1 - \frac{N}{2}, \frac{N}{2}\right]$$

• Take N equally spaced samples

$$f(0), f(2\pi/N), \ldots, f(2\pi(N-1)/N)$$

- Take an FFT of the samples in $O(N \cdot \log N)$ time.
- Locate k non-zero Fourier coefficients.

Doesn't Take Sparsity Into Account...

• \mathcal{M} is 5 × 6, \vec{a} contains 1 nonzero entry.

Reconstruct entry index via Chinese Remainder Theorem
Two estimates of the entry's value

SAVED ONE TEST!

3 + 4 = +

• \mathcal{M} is 5 × 6, \vec{a} contains 1 nonzero entry.

$\equiv 0 \mod 2$ $\equiv 1 \mod 2$ $\equiv 0 \mod 3$	0	0 1 0	0 0	0 1 1	1 0 0	0 1 0	$ \left(\begin{array}{c} 0\\ 0\\ 3.5\\ 0 \end{array}\right) $
$\equiv 1 \mod 3 \\ \equiv 2 \mod 3$	0	1 0	0 1	0 0	1 0	0 1)	$\left(\begin{array}{c}0\\0\\0\end{array}\right)$

Reconstruct entry index via Chinese Remainder Theorem
Two estimates of the entry's value

SAVED ONE TEST!

3

< 日 > < 同 > < 回 > < 回 > < □ > <

• \mathcal{M} is 5 × 6, \vec{a} contains 1 nonzero entry.

$$\begin{pmatrix} 1 & 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \\ 3.5 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 3.5 \\ 0 \\ 0 \\ 0 \\ 3.5 \end{pmatrix} \iff \text{Index} \equiv 0 \mod 2$$

Reconstruct entry index via Chinese Remainder Theorem

• Two estimates of the entry's value

SAVED ONE TEST!

3

• \mathcal{M} is 5 × 6, \vec{a} contains 1 nonzero entry.

$$\begin{pmatrix} 1 & 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \\ 3.5 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 3.5 \\ 0 \\ 0 \\ 0 \\ 3.5 \end{pmatrix} \iff \text{Index} \equiv 0 \mod 2$$

- Reconstruct entry index via Chinese Remainder Theorem
- Two estimates of the entry's value

SAVED ONE TEST!

3

• \mathcal{M} is 5 × 6, \vec{a} contains 1 nonzero entry.

$$\begin{pmatrix} 1 & 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \\ 3.5 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 3.5 \\ 0 \\ 0 \\ 0 \\ 3.5 \end{pmatrix} \Leftrightarrow \text{Index} \equiv 2 \mod 3$$

- Reconstruct entry index via Chinese Remainder Theorem
- Two estimates of the entry's value

SAVED ONE TEST!

- We only utilize 4 samples
- Computed Efficiently using 2 FFTs
- Reconstruct frequency index via Chinese Remainder Theorem
- Two estimates of nonzero Fourier coefficient

SAVED TWO SAMPLES!

3

$$\begin{pmatrix} 1 & 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 & 1 \end{pmatrix} \cdot \mathcal{F}_{6 \times 6} \mathcal{F}_{6 \times 6}^{-1} \cdot \begin{pmatrix} 0 \\ 0 \\ 3.5 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 3.5 \\ 0 \\ 0 \\ 0 \\ 3.5 \end{pmatrix}$$

- We only utilize 4 samples
- Computed Efficiently using 2 FFTs
- Reconstruct frequency index via Chinese Remainder Theorem
- Two estimates of nonzero Fourier coefficient

SAVED TWO SAMPLES!

3

- We only utilize 4 samples
- Computed Efficiently using 2 FFTs
- Reconstruct frequency index via Chinese Remainder Theorem
- Two estimates of nonzero Fourier coefficient

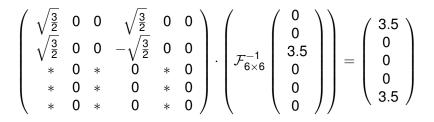
SAVED TWO SAMPLES!

M.A. Iwen (MSU)

Group Testing

November 6, 2013 20 / 24

3

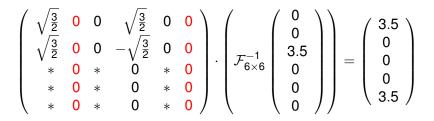


M.A. Iwen (MSU)

Group Testing

ъ November 6, 2013 20/24

TH 161



We only utilize 4 samples

M.A. Iwen (MSU)

Group Testing

ъ November 6, 2013 20/24

H N

$$\left(\begin{array}{ccccc} \sqrt{3} \cdot \mathcal{F}_{2 \times 2} \cdot \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \end{pmatrix} \\ \sqrt{2} \cdot \mathcal{F}_{3 \times 3} \cdot \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \end{array}\right) \cdot \left(\mathcal{F}_{6 \times 6}^{-1} \begin{pmatrix} 0 \\ 0 \\ 3.5 \\ 0 \\ 0 \\ 0 \end{pmatrix}\right) = \begin{pmatrix} 3.5 \\ 0 \\ 0 \\ 0 \\ 3.5 \end{pmatrix}$$

- We only utilize 4 samples
- Computed Efficiently using 2 FFTs
- Reconstruct frequency index via Chinese Remainder Theorem
- Two estimates of nonzero Fourier coefficient

SAVED TWO SAMPLES!

M.A. Iwen (MSU)

Group Testing

November 6, 2013 20 / 24

3

Example

Group Testing - Fourier Example

$$\left(\begin{array}{ccccc} \sqrt{3} \cdot \mathcal{F}_{2 \times 2} \cdot \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \end{array}\right) \cdot \left(\mathcal{F}_{6 \times 6}^{-1} \begin{pmatrix} 0 \\ 0 \\ 3.5 \\ 0 \\ 0 \\ 0 \\ 0 \end{array}\right) = \begin{pmatrix} 3.5 \\ 0 \\ 0 \\ 0 \\ 3.5 \end{pmatrix}$$

- We only utilize 4 samples
- Computed Efficiently using 2 FFTs
- Reconstruct frequency index via Chinese Remainder Theorem
- Two estimates of nonzero Fourier coefficient

SAVED TWO SAMPLES!

M.A. Iwen (MSU)

Group Testing

$$\left(\begin{array}{ccccc} \sqrt{3} \cdot \mathcal{F}_{2 \times 2} \cdot \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \end{array}\right) \cdot \left(\mathcal{F}_{6 \times 6}^{-1} \begin{pmatrix} 0 \\ 0 \\ 3.5 \\ 0 \\ 0 \\ 0 \\ 0 \end{array}\right) = \begin{pmatrix} 3.5 \\ 0 \\ 0 \\ 0 \\ 3.5 \end{pmatrix}$$

- We only utilize 4 samples
- Computed Efficiently using 2 FFTs
- Reconstruct frequency index via Chinese Remainder Theorem
- Two estimates of nonzero Fourier coefficient

SAVED TWO SAMPLES!

M.A. Iwen (MSU)

Group Testing

November 6, 2013 20 / 24

A B M A B M

Example

Robustness: Nonlinear Approximation Guarantees

Theorem [I. '10]

Suppose $f : [0, 2\pi] \to \mathbb{C}$ has $\hat{f} \in \ell_1$ and \hat{f}_k^{opt} supported in [-N/2, N/2]. Then, we can deterministically approximate f by a k-term trigonometric polynomial, a, so that

$$\|\boldsymbol{f} - \boldsymbol{a}\|_{2} \leq \|\boldsymbol{f} - \boldsymbol{f}_{k}^{\text{opt}}\|_{2} + \frac{\left\|\hat{\boldsymbol{f}} - \hat{\boldsymbol{f}}_{k}^{\text{opt}}\right\|_{1}}{\sqrt{k}} + \epsilon_{N}$$

in $O(k^2 \cdot \log^4 N)$ time. Number of *f* samples used is $O(k^2 \cdot \log^4 N)$.

- A TE N - A TE N

Example

Monte Carlo Sparse Fourier Transform

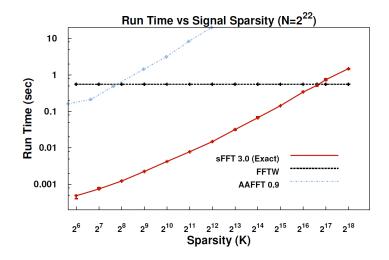
Theorem [l. '10]

Suppose $f : [0, 2\pi] \to \mathbb{C}$ has $\hat{f} \in \ell_1$ and \hat{f}_k^{opt} supported in [-N/2, N/2]. If we run DSFT using $O\left(\log\left(\frac{N}{1-\sigma}\right)\right)$ randomly selected p_{q+j} -primes, then with probability at least σ we will approximate f by a k-term trigonometric polynomial, a, having

$$\|\boldsymbol{f} - \boldsymbol{a}\|_{2} \leq \|\boldsymbol{f} - \boldsymbol{f}_{k}^{\text{opt}}\|_{2} + \frac{\left\|\hat{\boldsymbol{f}} - \hat{\boldsymbol{f}}_{k}^{\text{opt}}\right\|_{1}}{\sqrt{k}} + \epsilon_{N}$$

in $O(k \cdot \log^4 N)$ time. Number of *f* samples used is $O(k \cdot \log^4 N)$.

Code of Hassanieh, Indyk, Katabi, and Price



3 > 4 3

Thank You!

Questions?

M.A. Iwen (MSU)

Group Testing

November 6, 2013 24 / 24

æ

イロト イヨト イヨト イヨト