Abstract Algebra I - Lecture 26

Adam Chapman

Department of Mathematics, Michigan State University, East Lansing, MI 48824

Review for Midterms Exam 2.

Exercise.

Find the inverse of 2x + 7 in $\mathbb{Q}[x]/(x^2 - 12)$. Solution.

$$x^{2} - 12 = (2x + 7)(\frac{1}{2}x - \frac{7}{4}) + \frac{1}{4}$$
$$\frac{1}{4} = (x^{2} - 12) + (\frac{7}{4} - \frac{1}{2}x)(2x + 7)$$
$$1 = 4(x^{2} - 12) + (7 - 2x)(2x + 7)$$

so the inverse of 2x + 7 is 7 - 2x.

Exercise.

Find $gcd(x^4 + x^2 + 1, x^3 + x^2 + x)$ in $\mathbb{Z}_2[x]$. Solution.

$$x^{4} + x^{2} + 1 = (x + 1)(x^{3} + x^{2} + x) + x^{2} + x + 1$$
$$x^{3} + x^{2} + x = x(x^{2} + x + 1)$$

so $gcd(x^4 + x^2 + 1, x^3 + x^2 + x) = x^2 + x + 1$.

Exercise.

Say if the following polynomials are irreducible:

- $x^2 + 1$ in $\mathbb{Z}_2[x]$.
- $x^2 + 1$ in $\mathbb{Z}_3[x]$.

Preprint submitted to Elsevier

Email address: adam1chapman@yahoo.com (Adam Chapman)

- $x^2 + 1$ in $\mathbb{R}[x]$.
- $x^2 + 1$ in $\mathbb{C}[x]$.

Solution.

Note that a polynomial in F[x] of degree 2 has a root in F if and only if it is reducible.

The polynomial $f(x) = x^2 + 1 \in \mathbb{Z}_2[x]$ has a root in \mathbb{Z}_2 : f(1) = 1 + 1 = 0, so it is reducible.

The polynomial $f(x) = x^2 + 1 \in \mathbb{Z}_3[x]$ has no root in \mathbb{Z}_2 : f(0) = 0 + 1 = 1, f(1) = 1 + 1 = 2, $f(2) = 2^2 + 1 = 1 + 1 = 2$, so it is irreducible.

The polynomial $f(x) = x^2 + 1 \in \mathbb{R}[x]$ has no root because its discriminant is -4 < 0, so it is irreducible.

The polynomial $f(x) = x^2 + 1 \in \mathbb{C}[x]$ has a root: $f(i) = i^2 + 1 = -1 + 1 = 0$, so it is reducible.

Exercise.

What is the additive order of [72] in \mathbb{Z}_{45} ?

Solution.

The additive order of [m] in \mathbb{Z}_n is $\frac{n}{\gcd(m,n)}$. Now 72 = $2^3 \cdot 3$ and 45 = $3^2 \cdot 5$, so $\gcd(72, 45) = 3$. Consequently the additive order of [72] in \mathbb{Z}_{45} is $\frac{45}{3} = 15$.

Exercise.

Find the multiplicative order of [2] in \mathbb{Z}_9 .

Solution.

We know that if gcd(m, n) = 1 then [m] is invertible in \mathbb{Z}_n and $[m]^{\varphi(n)} = [1]$. Therefore the multiplicative order of [m] in \mathbb{Z}_n in that case divides $\varphi(n)$.

In this case, $\varphi(9) = 6$, so the possible orders are 2, 3 and 6. (Note that by definition, the identity is the unique element whose multiplicative order is 1.)

 $[2] \cdot [2] = [4]$ so the order is not 2. $[2] \cdot [2] \cdot [2] = [8]$ so the order is not 3. Therefore the order is 6.

Exercise.

Is $f : \mathbb{R} \times \mathbb{R} \to M_2(\mathbb{R}), f(a, b) = \begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix}$ a homomorphism? Is it injective? Is it surjective?

Solution.

It is a homomorphism: $f((a_1, b_1) + (a_2, b_2)) = f(a_1 + a_2, b_1 + b_2) = \begin{pmatrix} a_1 + a_2 & 0 \\ 0 & b_1 + b_2 \end{pmatrix} = \begin{pmatrix} a_1 & 0 \\ 0 & b_1 \end{pmatrix} + \begin{pmatrix} a_2 & 0 \\ 0 & b_2 \end{pmatrix} = f(a_1, b_1) + f(a_2, b_2) \text{ and } f((a_1, b_1) \cdot (a_2, b_2)) = f(a_1 a_2, b_1 b_2) =$

 $\begin{pmatrix} a_1a_2 & 0\\ 0 & b_1b_2 \end{pmatrix} = \begin{pmatrix} a_1 & 0\\ 0 & b_1 \end{pmatrix} \cdot \begin{pmatrix} a_2 & 0\\ 0 & b_2 \end{pmatrix} = f(a_1, b_1) + f(a_2, b_2).$ It is injective: If $\begin{pmatrix} a_1 & 0\\ 0 & b_1 \end{pmatrix} = \begin{pmatrix} a_2 & 0\\ 0 & b_2 \end{pmatrix}$ then $a_1 = a_2$ and $b_1 = b_2$, which means $(a_1, b_1) = (a_2, b_2).$ It is not surjective, e.g. $\begin{pmatrix} 0 & 1\\ 0 & 0 \end{pmatrix}$ is not in the image of f.