Abstract Algebra I - Lecture 26

Adam Chapman

Department of Mathematics, Michigan State University, East Lansing, MI 48824

Review for Midterms Exam 2.

Exercise.
Find the inverse of $2 x+7$ in $\mathbb{Q}[x] /\left(x^{2}-12\right)$.
Solution.

$$
\begin{aligned}
& x^{2}-12=(2 x+7)\left(\frac{1}{2} x-\frac{7}{4}\right)+\frac{1}{4} \\
& \frac{1}{4}=\left(x^{2}-12\right)+\left(\frac{7}{4}-\frac{1}{2} x\right)(2 x+7) \\
& 1=4\left(x^{2}-12\right)+(7-2 x)(2 x+7)
\end{aligned}
$$

so the inverse of $2 x+7$ is $7-2 x$.
Exercise.
Find $\operatorname{gcd}\left(x^{4}+x^{2}+1, x^{3}+x^{2}+x\right)$ in $\mathbb{Z}_{2}[x]$.
Solution.

$$
\begin{gathered}
x^{4}+x^{2}+1=(x+1)\left(x^{3}+x^{2}+x\right)+x^{2}+x+1 \\
x^{3}+x^{2}+x=x\left(x^{2}+x+1\right)
\end{gathered}
$$

so $\operatorname{gcd}\left(x^{4}+x^{2}+1, x^{3}+x^{2}+x\right)=x^{2}+x+1$.
Exercise.
Say if the following polynomials are irreducible:

- $x^{2}+1$ in $\mathbb{Z}_{2}[x]$.
- $x^{2}+1$ in $\mathbb{Z}_{3}[x]$.

[^0]- $x^{2}+1$ in $\mathbb{R}[x]$.
- $x^{2}+1$ in $\mathbb{C}[x]$.

Solution.

Note that a polynomial in $F[x]$ of degree 2 has a root in F if and only if it is reducible.

The polynomial $f(x)=x^{2}+1 \in \mathbb{Z}_{2}[x]$ has a root in $\mathbb{Z}_{2}: f(1)=1+1=0$, so it is reducible.

The polynomial $f(x)=x^{2}+1 \in \mathbb{Z}_{3}[x]$ has no root in $\mathbb{Z}_{2}: f(0)=0+1=$ $1, f(1)=1+1=2, f(2)=2^{2}+1=1+1=2$, so it is irreducible.

The polynomial $f(x)=x^{2}+1 \in \mathbb{R}[x]$ has no root because its discriminant is $-4<0$, so it is irreducible.

The polynomial $f(x)=x^{2}+1 \in \mathbb{C}[x]$ has a root: $f(i)=i^{2}+1=-1+1=0$, so it is reducible.

Exercise.

What is the additive order of [72] in \mathbb{Z}_{45} ?

Solution.

The additive order of $[m]$ in \mathbb{Z}_{n} is $\frac{n}{\operatorname{gcd}(m, n)}$. Now $72=2^{3} \cdot 3$ and $45=3^{2} \cdot 5$, so $\operatorname{gcd}(72,45)=3$. Consequently the additive order of [72] in \mathbb{Z}_{45} is $\frac{45}{3}=15$.

Exercise.

Find the multiplicative order of [2] in \mathbb{Z}_{9}.
Solution.
We know that if $\operatorname{gcd}(m, n)=1$ then $[m]$ is invertible in \mathbb{Z}_{n} and $[m]^{\varphi(n)}=[1]$. Therefore the multiplicative order of $[m]$ in \mathbb{Z}_{n} in that case divides $\varphi(n)$.

In this case, $\varphi(9)=6$, so the possible orders are 2,3 and 6 . (Note that by definition, the identity is the unique element whose multiplicative order is 1.)
$[2] \cdot[2]=[4]$ so the order is not 2 . [2] $\cdot[2] \cdot[2]=[8]$ so the order is not 3 . Therefore the order is 6 .

Exercise.
Is $f: \mathbb{R} \times \mathbb{R} \rightarrow M_{2}(\mathbb{R}), f(a, b)=\left(\begin{array}{ll}a & 0 \\ 0 & b\end{array}\right)$ a homomorphism? Is it injective? Is it surjective?

Solution.

It is a homomorphism: $f\left(\left(a_{1}, b_{1}\right)+\left(a_{2}, b_{2}\right)\right)=f\left(a_{1}+a_{2}, b_{1}+b_{2}\right)=\left(\begin{array}{rr}a_{1}+a_{2} & 0 \\ 0 & b_{1}+b_{2}\end{array}\right)=$ $\left(\begin{array}{rr}a_{1} & 0 \\ 0 & b_{1}\end{array}\right)+\left(\begin{array}{rr}a_{2} & 0 \\ 0 & b_{2}\end{array}\right)=f\left(a_{1}, b_{1}\right)+f_{(}\left(a_{2}, b_{2}\right)$ and $f\left(\left(a_{1}, b_{1}\right) \cdot\left(a_{2}, b_{2}\right)\right)=f\left(a_{1} a_{2}, b_{1} b_{2}\right)=$
$\left.\left(\begin{array}{rr}a_{1} a_{2} & 0 \\ 0 & b_{1} b_{2}\end{array}\right)=\left(\begin{array}{rr}a_{1} & 0 \\ 0 & b_{1}\end{array}\right) \cdot\left(\begin{array}{rr}a_{2} & 0 \\ 0 & b_{2}\end{array}\right)=f\left(a_{1}, b_{1}\right)+f_{(} a_{2}, b_{2}\right)$.
It is injective: If $\left(\begin{array}{rr}a_{1} & 0 \\ 0 & b_{1}\end{array}\right)=\left(\begin{array}{rr}a_{2} & 0 \\ 0 & b_{2}\end{array}\right)$ then $a_{1}=a_{2}$ and $b_{1}=b_{2}$, which means $\left(a_{1}, b_{1}\right)=\left(a_{2}, b_{2}\right)$.

It is not surjective, e.g. $\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)$ is not in the image of f.

[^0]: Email address: adam1chapman@yahoo.com (Adam Chapman)

