Double Integration

1. Double integrals as interated integrals (Fubini's Theorem):

If $\iint_{[a,b]\times[c,d]} |f(x,y)| dA < \infty$ then

$$\iint_{[a,b]\times[c,d]} f(x,y) \, dA = \int_a^b \left(\int_c^d f(x,y) \, dy \right) \, dx = \int_c^d \left(\int_a^b f(x,y) \, dx \right) \, dy.$$

Exercise 1: Calculate $\int \int_R (x^2y - xy) dA$ where $R = [0, 2] \times [2, 4]$. Check Fubini's theorem, i.e. check that the answer to the integral does not depend on the order of integration.

Exercise 2: (This is a very helpful thing for 2d integrals.) Let f(x,y) = h(x)g(y) where $h: [a,b] \to \mathbb{R}$ and $g: [c,d] \to \mathbb{R}$ are continuous functions. Show that

$$\iint_R h(x)g(y)\,dx\,dy = \left[\int_a^b h(x)\,dx\right]\,\left[\int_c^d g(y)dy\right]\,,$$

where $R = [a, b] \times [c, d]$

2. An Integral for which Fubini's Theorem Fails:

Although Fubini's theorem holds for most functions met in practice, we must still exercise some caution. The next few exercises will demonstrates a case where Fubini fails.

Exercise 3: In preparation for the next problem, prove that $\frac{1}{2}\sin 2\theta = \frac{\tan \theta}{1+\tan^2 \theta}$ by using that:

(a)
$$\tan \theta = \frac{\sin \theta}{\cos \theta}$$

- (b) $1 = \cos^2 \theta + \sin^2 \theta$, and
- (c) $\sin 2\theta = 2\cos\theta\sin\theta$.

Exercise 4: Use a substitution involving the tangent function to show that

$$\int_0^1 \frac{x^2 - y^2}{\left(x^2 + y^2\right)^2} dy = \frac{1}{x^2} \int_0^1 \frac{1 - \left(\frac{y}{x}\right)^2}{\left(1 + \left(\frac{y}{x}\right)^2\right)^2} dy = \frac{1}{1 + x^2}.$$

You will need to use that:

(a)
$$1 - \tan^2 \theta = \frac{\cos^2 \theta - \sin^2 \theta}{\cos^2 \theta} = \frac{\cos 2\theta}{\cos^2 \theta}$$

- (b) $1 + \tan^2 \theta = \frac{1}{\cos^2 \theta}$, and
- (c) Exercise 3.

Exercise 5: Use Exercise 4 and integration formula 37 from the inside cover of your book to show that

$$\int_0^1 \int_0^1 \frac{x^2 - y^2}{(x^2 + y^2)^2} \, dy \, dx = \frac{\pi}{4}.$$

Exercise 6: Now use Exercise 4 and/or 5 to show that

$$\int_0^1 \int_0^1 \frac{x^2 - y^2}{(x^2 + y^2)^2} \, dx \, dy = -\frac{\pi}{4}.$$

Exercise 7: Have Exercises 5 and 6 just violated Fubini's Theorem on page 277 of the book? Why or why not? What must $\int_0^1 \int_0^1 \left| \frac{x^2 - y^2}{(x^2 + y^2)^2} \right| dx dy$ equal?

3. Double Integrals over more general domains

Exercise 8: Sketch the region of integration, interchange the order and evaluate

$$\int_0^1 \int_{1-y}^1 (x+y^2) dx dy \, .$$

4. Volume Below z = f(x, y)

Suppose that the function f is continuous and nonnegative on the bounded plane region R. Then the volume V of the solid that lies below the surface z = f(x, y) and above the region R is defined to be

$$V = \iint_R f(x, y) \, dA$$

provided that this integral exists.

5. Area of the plane region R

To calculate the area of the plane region R, a(R), we find the volume below the surface f(x, y) = 1, i.e.

$$a(R) = \iint_R 1 \, dA$$

Exercise 9: Find the area between y = x + 2 and $y = x^2$.

Exercise 10: Find

$$\iint_D (1 - \sin(\pi x)) y \, dA \,,$$

where D is the domain bounded by the x-axis and the curve $y = \cos \pi x$, and lying between $x = -\frac{1}{2}$ and $x = \frac{1}{2}$.

Exercise 11: Sketch the region of integration, interchange the order and evaluate:

$$\int_0^{\pi/2} \int_0^{\cos\theta} \cos(\theta) \, dr d\theta \, .$$