Double Integration

1. Double integrals as interated integrals (Fubini's Theorem):

If $\iint_{[a, b] \times[c, d]}|f(x, y)| d A<\infty$ then

$$
\iint_{[a, b] \times[c, d]} f(x, y) d A=\int_{a}^{b}\left(\int_{c}^{d} f(x, y) d y\right) d x=\int_{c}^{d}\left(\int_{a}^{b} f(x, y) d x\right) d y
$$

Exercise 1: Calculate $\iint_{R}\left(x^{2} y-x y\right) d A$ where $R=[0,2] \times[2,4]$. Check Fubini's theorem, i.e. check that the answer to the integral does not depend on the order of integration.

Exercise 2: (This is a very helpful thing for 2d integrals.)
Let $f(x, y)=h(x) g(y)$ where $h:[a, b] \rightarrow \mathbb{R}$ and $g:[c, d] \rightarrow \mathbb{R}$ are continuous functions. Show that

$$
\iint_{R} h(x) g(y) d x d y=\left[\int_{a}^{b} h(x) d x\right]\left[\int_{c}^{d} g(y) d y\right]
$$

where $R=[a, b] \times[c, d]$

2. An Integral for which Fubini's Theorem Fails:

Although Fubini's theorem holds for most functions met in practice, we must still exercise some caution. The next few exercises will demonstrates a case where Fubini fails.

Exercise 3: In preparation for the next problem, prove that $\frac{1}{2} \sin 2 \theta=\frac{\tan \theta}{1+\tan ^{2} \theta}$ by using that:
(a) $\tan \theta=\frac{\sin \theta}{\cos \theta}$
(b) $1=\cos ^{2} \theta+\sin ^{2} \theta$, and
(c) $\sin 2 \theta=2 \cos \theta \sin \theta$.

Exercise 4: Use a substitution involving the tangent function to show that

$$
\int_{0}^{1} \frac{x^{2}-y^{2}}{\left(x^{2}+y^{2}\right)^{2}} d y=\frac{1}{x^{2}} \int_{0}^{1} \frac{1-\left(\frac{y}{x}\right)^{2}}{\left(1+\left(\frac{y}{x}\right)^{2}\right)^{2}} d y=\frac{1}{1+x^{2}}
$$

You will need to use that:
(a) $1-\tan ^{2} \theta=\frac{\cos ^{2} \theta-\sin ^{2} \theta}{\cos ^{2} \theta}=\frac{\cos 2 \theta}{\cos ^{2} \theta}$,
(b) $1+\tan ^{2} \theta=\frac{1}{\cos ^{2} \theta}$, and
(c) Exercise 3.

Exercise 5: Use Exercise 4 and integration formula 37 from the inside cover of your book to show that

$$
\int_{0}^{1} \int_{0}^{1} \frac{x^{2}-y^{2}}{\left(x^{2}+y^{2}\right)^{2}} d y d x=\frac{\pi}{4}
$$

Exercise 6: Now use Exercise 4 and/or 5 to show that

$$
\int_{0}^{1} \int_{0}^{1} \frac{x^{2}-y^{2}}{\left(x^{2}+y^{2}\right)^{2}} d x d y=-\frac{\pi}{4}
$$

Exercise 7: Have Exercises 5 and 6 just violated Fubini's Theorem on page 277 of the book? Why or why not? What must $\int_{0}^{1} \int_{0}^{1}\left|\frac{x^{2}-y^{2}}{\left(x^{2}+y^{2}\right)^{2}}\right| d x d y$ equal?
3. Double Integrals over more general domains

Exercise 8: Sketch the region of integration, interchange the order and evaluate

$$
\int_{0}^{1} \int_{1-y}^{1}\left(x+y^{2}\right) d x d y
$$

4. Volume Below $z=f(x, y)$

Suppose that the function f is continuous and nonnegative on the bounded plane region R. Then the volume V of the solid that lies below the surface $z=f(x, y)$ and above the region R is defined to be

$$
V=\iint_{R} f(x, y) d A
$$

provided that this integral exists.

5. Area of the plane region R

To calculate the area of the plane region $R, a(R)$, we find the volume below the surface $f(x, y)=1$, i.e.

$$
a(R)=\iint_{R} 1 d A
$$

Exercise 9: Find the area between $y=x+2$ and $y=x^{2}$.

Exercise 10: Find

$$
\iint_{D}(1-\sin (\pi x)) y d A
$$

where D is the domain bounded by the x-axis and the curve $y=\cos \pi x$, and lying between $x=-\frac{1}{2}$ and $x=\frac{1}{2}$.

Exercise 11: Sketch the region of integration, interchange the order and evaluate:

$$
\int_{0}^{\pi / 2} \int_{0}^{\cos \theta} \cos (\theta) d r d \theta
$$

