The Cross Product

1. Cross Product

Definition 1 (Cross Product) The cross product, or vector product, of the vectors $\mathbf{a} = \langle a_1, a_2, a_3 \rangle$ and $\mathbf{b} = \langle b_1, b_2, b_3 \rangle$ is another vector that is defined algebraically by the formula

 $\mathbf{a} \times \mathbf{b} = \langle a_2 b_3 - a_3 b_2, a_3 b_1 - a_1 b_3, a_1 b_2 - a_2 b_1 \rangle.$

Ex. 1: Prove that the cross product $\mathbf{a} \times \mathbf{b}$ is perpendicular to both \mathbf{a} and \mathbf{b} .

TA Lecture: Calculating the Cross Product

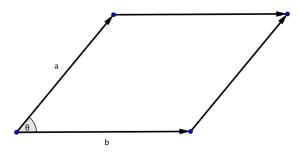
Ex. 2: Calculate the cross product of $\langle 1, 0, 0 \rangle$ with $\langle 0, 1, 0 \rangle$.

Ex. 3: Calculate the cross product of $3\mathbf{i} - \mathbf{j} + 2\mathbf{k}$ with $2\mathbf{i} + 2\mathbf{j} - \mathbf{k}$.

2. Geometric Significance

Ex. 4: Let θ be the angle between nonzero vectors **a** and **b** (measured so that $0 \le \theta \le \pi$). Prove that

 $\|\mathbf{a} \times \mathbf{b}\| = \|\mathbf{a}\| \|\mathbf{b}\| \sin \theta$ = the area of the parallelogram with sides \mathbf{a} and \mathbf{b} (below).



Ex. 5: Prove that two nonzero vectors \mathbf{a} and \mathbf{b} are parallel if and only if $\mathbf{a} \times \mathbf{b} = 0$.

Theorem 2 (Algebraic Properties of the Cross Product) If \mathbf{a} , \mathbf{b} , and \mathbf{c} are vectors and k is a real number, then

- (a) $\mathbf{a} \times \mathbf{b} = -(\mathbf{b} \times \mathbf{a}),$
- (b) $(k\mathbf{a}) \times \mathbf{b} = \mathbf{a} \times (k\mathbf{b}) = k(\mathbf{a} \times \mathbf{b}),$
- (c) $\mathbf{a} \times (\mathbf{b} + \mathbf{c}) = (\mathbf{a} \times \mathbf{b}) + (\mathbf{a} \times \mathbf{c}),$
- (d) $\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c}) = (\mathbf{a} \times \mathbf{b}) \cdot \mathbf{c}$,
- (e) $\mathbf{a} \times (\mathbf{b} \times \mathbf{c}) = (\mathbf{a} \cdot \mathbf{c})\mathbf{b} (\mathbf{a} \cdot \mathbf{b})\mathbf{c}.$

Definition 3 (The Scalar Triple Product) The scalar triple product of the vectors \mathbf{a}, \mathbf{b} , and \mathbf{c} is $\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c})$.

TA Lecture: Calculating the Scalar Triple Product

Ex. 6: Use Ex. 4 to prove that the volume, V, of the parallelpiped determined by the vectors \mathbf{a}, \mathbf{b} , and \mathbf{c} is the absolute value of the scalar triple product $\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c})$; that is,

$$V = |\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c})|.$$

Ex. 7: Find the scalar triple product of (2, 0, -3), (1, 1, 1), and (0, 4, -1).

Ex. 8: Use the scalar triple product to show that the points A(1, -1, 2), B(2, 0, 1), C(3, 2, 0), and D(5, 4, -2) are coplanar.