Derivatives and Planes

1. Partial Derivatives

Definition 1 (Partial Derivatives) The partial derivatives (with respect to x and with respect to y) of the function $f(x, y)$ are the two functions defined by

$$
\begin{align*}
& \frac{\partial f}{\partial x}(x, y)=f_{x}(x, y)=\lim _{h \rightarrow 0} \frac{f(x+h, y)-f(x, y)}{h} \tag{1}\\
& \frac{\partial f}{\partial y}(x, y)=f_{y}(x, y)=\lim _{h \rightarrow 0} \frac{f(x, y+h)-f(x, y)}{h} \tag{2}
\end{align*}
$$

whenever these limits exist.
Ex. (1) Compute the partial derivatives $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$ for $f(x, y)=\cos \left(x^{2} y\right)+y^{3}$.

Theorem 2 (Componentwise Differentiation) Suppose that

$$
\mathbf{c}(t)=\langle x(t), y(t), z(t)\rangle=x(t) \mathbf{i}+y(t) \mathbf{j}+z(t) \mathbf{k}
$$

is a curve, where $x(t), y(t)$, and $z(t)$ are differentiable functions from \mathbb{R} to \mathbb{R}. Then

$$
\mathbf{c}^{\prime}(t)=\left\langle x^{\prime}(t), y^{\prime}(t), z^{\prime}(t)\right\rangle=x^{\prime}(t) \mathbf{i}+y^{\prime}(t) \mathbf{j}+z^{\prime}(t) \mathbf{k}
$$

The derivative vector $\mathbf{c}^{\prime}(t)$ is tangent to the curve $c(t)$ at $(x(t), y(t), z(t))$.

Ex. (2) Find a vector that is tangent to the curve

$$
x(t)=t^{2}, \quad y(t)=t, \quad z(t)=\cos (t)
$$

at the point $P(0,0,1)$.

2. Tangent Planes

Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$. The plane tangent to the surface $z=f(x, y)$ at the point $P(a, b, f(a, b))$ is the plane through P that contains the tangent lines of both the curve

$$
x(t)=t, \quad y(t)=b, \quad z(t)=f(t, b)
$$

and the curve

$$
x(t)=a, \quad y(t)=t, \quad z(t)=f(a, t) .
$$

at P.

Board Ex. Consider the surface $z=f(x, y)=x^{2}+2 x y^{2}-y^{3}$. It contains the point $P(1,1, f(1,1))=$ $P(1,1,2)$. Write the equation of the line that is tangent to the curve

$$
x(t)=t, \quad y(t)=1, \quad z(t)=f(t, 1)
$$

and sketch the curve inside the graph of f.

Board Ex. Consider the surface $z=f(x, y)=x^{2}+2 x y^{2}-y^{3}$. It contains the point $P(1,1, f(1,1))=$ $P(1,1,2)$. Write the equation of the line that is tangent to the curve

$$
x(t)=1, \quad y(t)=t, \quad z(t)=f(1, t)
$$

and sketch the curve inside the graph of f.

Board Ex. Write the equation of the plane tangent to the surface $z=f(x, y)=x^{2}+2 x y^{2}-y^{3}$ at the point $P(1,1,2)$.

Board Ex. Consider the tangent plane

$$
-4 x-y+z=-3
$$

to the surface $z=f(x, y)=x^{2}+2 x y^{2}-y^{3}$ at the point $P(1,1,2)$ that you found in the last problem. Show that the tangent plane formula on page 110 gives the same answer, i.e., that

$$
\begin{aligned}
z & =f(1,1)+\left[\frac{\partial f}{\partial x}(1,1)\right](x-1)+\left[\frac{\partial f}{\partial y}(1,1)\right](y-1) \\
& =f(1,1)+\mathbf{D} f(1,1) \cdot\langle x-1, y-1\rangle
\end{aligned}
$$

Challenge Ex. Show that $\mathbf{D} f(1,1)$ from above satisfies the definition of the derivative of $f(x, y)=x^{2}+2 x y^{2}-y^{3}$ at $(1,1)$ on page 111 by using the polar coordinate transform

$$
x=r \cos \theta+1, y=r \sin \theta+1
$$

in order to show that

$$
\lim _{(x, y) \rightarrow(1,1)} \frac{|f(x, y)-f(1,1)-\mathbf{D} f(1,1) \cdot\langle x-1, y-1\rangle|}{\|(x, y)-(1,1)\|}=0
$$

