Vectors in \mathbb{R}^2

1. Vectors in \mathbb{R}^2

Definition 1 (Vector) A vector $\mathbf{v} = \langle a, b \rangle$ in \mathbb{R}^2 is an ordered pair of real numbers. We call a and b the components of the vector \mathbf{v} .

Vectors are geometrically represented by directed line segments in the cartesian plane:

Definition 2 (Equality) The two vectors $\mathbf{u} = \langle u_1, u_2 \rangle$ and $\mathbf{v} = \langle v_1, v_2 \rangle$ are equal if $u_1 = v_1$ and $u_2 = v_2$.

Definition 3 (Addition) The sum of two vectors $\mathbf{u} = \langle u_1, u_2 \rangle$ and $\mathbf{v} = \langle v_1, v_2 \rangle$ is the vector

$$\mathbf{u} + \mathbf{v} = \langle u_1 + v_1, u_2 + v_2 \rangle.$$

Definition 4 (Scalar Multiplication) If $\mathbf{u} = \langle u_1, u_2 \rangle$ and c is a real number, then the scalar multiple cu is the vector

$$c\mathbf{u} = \langle cu_1, cu_2 \rangle.$$

Ex. If $\mathbf{u} = \langle 3, 5 \rangle$ and $\mathbf{v} = \langle -4, 4 \rangle$, find $\mathbf{u} + \mathbf{v}$, $2\mathbf{u}$, and $\mathbf{u} - \mathbf{v}$ (that is, $\mathbf{u} + (-1)\mathbf{v}$).

Definition 5 (Length) The length of $\mathbf{v} = \langle a, b \rangle$ is denoted $|\mathbf{v}|$ and is defined as

$$|\mathbf{v}| = |\langle a, b \rangle| = \sqrt{a^2 + b^2}.$$

Ex. Find the length of $\mathbf{v} = \langle 3, 5 \rangle$

Definition 6 (Unit Vectors) A unit vector is a vector of length 1. If $\mathbf{a} = \langle a_1, a_2 \rangle \neq 0$, then

$$\mathbf{u} = \frac{\mathbf{a}}{|\mathbf{a}|}$$

is the unit vector in the same direction as \mathbf{a} .

- *Ex.* Find a unit vector in the same direction as $\langle 3, 5 \rangle$.
- *Ex.* Two unit vectors, $\mathbf{i} = \langle 1, 0 \rangle$ and $\mathbf{j} = \langle 0, 1 \rangle$, are often used as an alternative way to represent vectors. Write $\langle 3, 5 \rangle$ as a sum of \mathbf{i} and \mathbf{j} .
- *Board Ex.* Show that the line segment joining the midpoints of two sides of a triangle is parallel to and half the length of its third side.

2. Vectors in \mathbb{R}^3

Definition 7 (Vector) A vector $\mathbf{v} = \langle a, b, c \rangle$ in \mathbb{R}^3 is an ordered triple of real numbers.

Vectors in \mathbb{R}^3 are geometrically represented by directed line segments in three dimensional Euclidean space. Addition, scalar multiplication, length, and unit vectors are all defined in the same way as for vectors in \mathbb{R}^2 , but now we have *three* basic unit vectors, $\mathbf{i} = \langle 1, 0, 0 \rangle$, $\mathbf{j} = \langle 0, 1, 0 \rangle$, $\mathbf{k} = \langle 0, 0, 1 \rangle$.

Definition 8 (Distance) The **distance** between two points $P(x_1, y_1, z_1)$ and $Q(x_2, y_2, z_2)$ is $|PQ| = |\overrightarrow{PQ}| = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2 + (z_1 - z_2)^2}$

Ex. Find the distance between the points A(1,2,3) and B(3,-2,5).

Definition 9 (Dot Product) The dot product of the two vectors

 $\mathbf{a} = a_1\mathbf{i} + a_2\mathbf{j} + a_3\mathbf{k}$ and $\mathbf{b} = b_1\mathbf{i} + b_2\mathbf{j} + b_3\mathbf{k}$

is the scalar defined as

$$\mathbf{a} \cdot \mathbf{b} = a_1 b_1 + a_2 b_2 + a_3 b_3$$

Ex. Calculate the dot product of (1, 2, 10) and (-2, 3, 4).

The following properties of the dot product are useful for working with the dot product.

- (i) $\mathbf{a} \cdot \mathbf{a} = |\mathbf{a}|^2$
- (ii) $\mathbf{a} \cdot \mathbf{b} = \mathbf{b} \cdot \mathbf{a}$
- (iii) $\mathbf{a} \cdot (\mathbf{b} + \mathbf{c}) = \mathbf{a} \cdot \mathbf{b} + \mathbf{a} \cdot \mathbf{c}$
- (iv) $(r\mathbf{a}) \cdot \mathbf{b} = r(\mathbf{a} \cdot \mathbf{b}) = \mathbf{a} \cdot (r\mathbf{b})$

Does $(\mathbf{a} \cdot \mathbf{b}) \cdot \mathbf{c}$ make sense?

What about $(\mathbf{a} \cdot \mathbf{b})\mathbf{c}$?

3. Interpretation of the Dot Product

Theorem 10 If θ is the angle between the vectors **a** and **b** in \mathbb{R}^3 , then

 $\mathbf{a} \cdot \mathbf{b} = |\mathbf{a}| |\mathbf{b}| \cos \theta.$

Board Ex. Prove Thm 10:

Corollary 11 The two nonzero vectors \mathbf{a} and \mathbf{b} are perpendicular if and only if $\mathbf{a} \cdot \mathbf{b} = 0$.

Ex. Show that the vectors $3\mathbf{i} + 5\mathbf{j}$ and $-4\mathbf{i} + 4\mathbf{j}$ are not perpendicular using the dot product.

Ex. For what value k would the vectors (3, 5, 1) and (-4, 4, k) be perpendicular?

4. Projections

Board Ex. Given $\mathbf{a} = \langle 4, -5, 3 \rangle$ and $\mathbf{b} = \langle 2, 1, -2 \rangle$, find the projection of \mathbf{a} in the direction of \mathbf{b} .

5. Planes

How can we define a plane in space using the dot product if we are given a point $P_0(x_0, y_0, z_0)$ on the plane and a direction **n** perpendicular to the plane?

Board Ex. Given a point (2,3,1) and a plane 2x + 3y - z = 5, find the distance from the point to the plane.