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Integration on Manifolds

Definition 1 (A Simple n-dimensional Manifold) Consider a C2 and 1− 1 function Φ : Rn → RN

for any N ≥ n, with Φ = (Φ1, · · · ,ΦN ), where Φj : Rn → R, ∀j = 1, . . . , N . Suppose that the domain of
Φ is a “regular region” R∗ ⊂ Rn (“regular” can mean here, e.g., that the boundary of R∗ is C2, and that
R∗ is convex). We will call Φ(R∗) ⊂ RN a simple n-dimensional submanifold of RN .
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e.g.

Definition 2 Recall the derivative of Φ : Rn → RN at ~p ∈ R∗ is
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 ∈ RN×n

The columns of DΦ|~p span the tangent space to the n-dimensional manifold Φ(R∗) at Φ(~p). These are
exactly the tangent vectors to the n curves we get by holding all but one of the entries of Φ constant, as
we did with surfaces when n = 2 and N = 3.

~p
Φ(~p)

Φ

⊂ RD

R∗ ⊂ RD

d << D

Note: The column span{DΦ|~p} is an n-dim subspace and the affine subspace parallel to it passing
through Φ(~p) is tangent to Φ(R∗) at Φ(~p).

Definition 3 The n-dimensional volume element of Φ(R∗) is

dV :=

√∣∣∣det
(

(DΦ)
T

(DΦ)
)∣∣∣ dx1 dx2 . . . dxn

Here, (DΦ)
T ∈ Rn×N is just the usual transpose of the derivative matrix DΦ ∈ RN×n obtained by

making the ith-row of D into the ith-column of DT . Note that (DΦ)
T

(DΦ) ∈ Rn×n is symmetric and
square.

Definition 4 The d-dimensional volume of Φ(R∗) is defined to be

∫
Φ(R∗)

dV =

∫
R∗

√∣∣∣det
(

(DΦ)
T

(DΦ)
)∣∣∣dx1 dx2 . . . dxn

THIS SINGLE FORMULA GENERALIZES EVERYTHING WE HAVE LEARNED SO
FAR ABOUT INTEGRATION ON CURVES AND SURFACES, AS WELL AS ABOUT
CHANGES OF VARIABLES! The purpose of this lab will be to convince ourselves of this...
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1. Exercise: Consider the curve, or one-dimensional manifold, c([0, 1]), given by a C1 function c : R→
R3. In this case we have

Dc|t = c ′(t) =

 c′1(t)
c′2(t)
c′3(t)

 ∈ R3×1.

Show that Definition 3 agrees with our previous definition for ds in this case.
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2. Exercise: Consider the two-dimensional parameterization of a region in R2 given by the C2 change of
variables, (x, y) = Φ(u, v), given by Φ : R2 → R2. Show that Definition 3 agrees with our previous

definition for the Jacobian determinant ∂(x,y)
∂(u,v) in this case. Hint: det(AB) = det(A) det(B) holds

for all A,B ∈ Rn×n.
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3. Consider any surface, or two-dimensional manifold, given by a parameterization of the form Φ(u, v) =
(u, v, f(u, v)), where f : R2 → R is a C2-function. Show that Definition 3 agrees with our previous
definition for dS in this case.
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4. Compute the volume of the 3-dimensional manifold in R5, Φ
(
[0, 1]3

)
, parameterized by

Φ(u, v, t) = (u, v, u, v, t2).
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5. Integrate f : R5 → R over the 3-dimensional manifold from the last problem, when
f(a, b, c, d, e) = a−c+b−d+

√
e. Note: Before you can do this, you should decide what “integrating

f over Φ
(
[0, 1]3

)
” means!

6. Can you find two vectors that are perpendicular to the three-dimensional tangent space to Φ
(
[0, 1]3

)
at Φ(0, 0, 1)?
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