## Path Integrals, Curvature, and Conservative Vector Fields

Definition 1 (Unit Tangent Vector) A curve's unit tangent vector at the point $\mathbf{c}(t)$ is:

$$
\begin{equation*}
\mathbf{T}(t)=\frac{\mathbf{c}^{\prime}(t)}{\left\|\mathbf{c}^{\prime}(t)\right\|} \tag{1}
\end{equation*}
$$

Definition 2 (Unit Normal Vector) A curve's principle unit normal vector at $\mathbf{c}(t)$ is

$$
\begin{equation*}
\mathbf{N}(t)=\frac{\mathbf{T}^{\prime}(t)}{\left\|\mathbf{T}^{\prime}(t)\right\|} \tag{2}
\end{equation*}
$$

provided $\frac{d \mathbf{T}}{d t}(t) \neq \mathbf{0}$. This vector points in the direction the curve is bending.

1. Review Exercise: Show that $\mathbf{T}(t) \cdot \mathbf{N}(t)=0 \forall t$ by differentiating both sides of $\|\mathbf{T}(t)\|^{2}=1$.

Definition 3 (Curvature) The curvature of a curve $C$ is

$$
\begin{equation*}
\kappa(s)=\left\|\frac{d \mathbf{T}}{d s}\right\| \tag{3}
\end{equation*}
$$

where $\mathbf{T}$ is the unit tangent vector, and $s$ is the arc length distance from the beginning of $C$.

Note: If $\mathbf{c}:[0, a] \rightarrow \mathbb{R}^{2}$ is a unit speed parameterization of $C$, then $s:=\int_{0}^{s}\left\|\mathbf{c}^{\prime}(t)\right\| d t=\int_{0}^{s} d t$. Otherwise, if $\mathbf{c}:[0, a] \rightarrow \mathbb{R}^{2}$ is not a unit speed parameterization of $C$, then the arc length distance along the curve that one has traveled at time $t$ is $s(t):=\int_{0}^{t}\left\|\mathbf{c}^{\prime}(u)\right\| d u$.
2. Exercise - First Curvature Formula: Prove that $\kappa(t)=\frac{\left\|\mathbf{T}^{\prime}(t)\right\|}{\left\|\mathbf{c}^{\prime}(t)\right\|}$ when given a parameterization $\mathbf{c}:[0, a] \rightarrow \mathbb{R}^{2}$ of a given curve $C$.
3. Exercise: Suppose we are given a parameterization $\mathbf{c}:[0, a] \rightarrow \mathbb{R}^{2}$ of a given curve $C$. Write the acceleration $\mathbf{c}^{\prime \prime}(t)$ in terms of $C^{\prime}$ s curvature $\kappa(t)$, scalar acceleration $a(t):=\frac{d}{d t}\left\|\mathbf{c}^{\prime}(t)\right\|$, and the moving orthonormal basis vectors $\mathbf{T}(t)$ and $\mathbf{N}(t)$ by computing

$$
\mathbf{c}^{\prime \prime}(t)=\frac{d}{d t} \mathbf{c}^{\prime}(t)=\frac{d}{d t}\left(\left\|\mathbf{c}^{\prime}(t)\right\| \cdot \mathbf{T}(t)\right)
$$

4. Exercise: Use the last exercise to derive this additional formula for curvature.

$$
\begin{equation*}
\kappa(t)=\frac{\left\|\mathbf{c}^{\prime}(t) \times \mathbf{c}^{\prime \prime}(t)\right\|}{\left\|\mathbf{c}^{\prime}(t)\right\|^{3}} \tag{4}
\end{equation*}
$$

5. Exercise Find the curvature formula for the space curve $\mathbf{c}=\left(t, t^{2} / 2, t^{3} / 3\right)$ at a general point, at $(0,0,0)$, and at $\left(1, \frac{1}{2}, \frac{1}{3}\right)$.

Theorem 4 (The Fundamental Theorem for Line Integrals) Let $f$ be a function of two or three variables and let $C$ be a smooth curve from $A$ to $B$ parameterized by the vector-valued function $\mathbf{r}(t)$ for $a \leq t \leq b$. If $f$ is continuously differentiable at each point of $C$, then

$$
\begin{equation*}
\int_{C} \nabla f \cdot d \mathbf{r}=f(B)-f(A) \tag{5}
\end{equation*}
$$

6. Note: Gradient vector fields have integrals which only depend on the endpoints of a given path! Actually, this is the only case!

Theorem 5 The line integral $\int_{C} \mathbf{F} \cdot \mathbf{T} d s$ of the continuous vector field $\mathbf{F}$ is independent of path in the plane or space region $D$ if and only if $\mathbf{F}=\nabla f$ for some function $f$ defined on $D$.
7. This makes gradient vector fields very important - important enough to have two names...

Definition 6 The vector field $\mathbf{F}$ defined on a region $D$ is conservative provided that there exists a scalar function $f$ defined on $D$ such that

$$
\mathbf{F}=\boldsymbol{\nabla} f
$$

at each point of $D$. In this case $f$ is called a potential function for the vector field $\mathbf{F}$.
8. Exercise: Find a potential function for the conservative vector field $\mathbf{F}=\left\langle 2 x+5 y, 5 x+e^{y}\right\rangle$.

Theorem 7 Suppose that the vector field $\mathbf{F}=\langle P, Q\rangle$ is continuously differentiable in an open rectangle $R$ in the xy-plane. Then $\mathbf{F}$ is conservative in $R$ - and hence has a potential function $f(x, y)$ defined on $R$ - if and only if, at each point of $R$,

$$
\frac{\partial P}{\partial y}=\frac{\partial Q}{\partial x}
$$

9. Exercise: Check if the following fields are conservative and if so find their potential functions.
(a) $\left\langle 2 x y-y^{2}, x^{2}-2 x y\right\rangle$.
(b) $\langle\cos (x) \sin (y), \sin (x) \cos (y)\rangle$.
(c) $\frac{\mathbf{r}}{r^{3}}$, where $\mathbf{r}=\langle x, y, z\rangle$.
