Integration Practice

1. Let T be the region bounded by the planes $x=0, y=0$, and $z=2$, and the surface $z=x^{2}+y^{2}$ and lying in the quadrant $x \geq 0, y \geq 0$. Sketch the region and compute

$$
\iiint_{T} x d x d y d z .
$$

2. Evaluate

$$
\int_{0}^{1} \int_{0}^{x} \int_{x^{2}+y^{2}}^{2} d z d y d x
$$

Sketch the region T of integration and describe it.
3. Find the z-coordinate of the center of mass of T, where T is the solid tetrahedron bounded by the four planes $x=0, y=0, z=0$, and $x+y+z=1$ and $\delta(x, y)=1$. [Hint: The mass of T is $m=\frac{1}{6}$.]
4. Find the moment of inertia of T about the y-axis, where T is the region bounded by the paraboloid $y=x^{2}+z^{2}$ and the plane $y=4$. Assume constant density, δ.

Use the change of variable formula to calculate

$$
\iint_{R} \cos (x+2 y) \sin (x-y) d x d y
$$

over the triangular region R bounded by the lines $y=0, y=x$, and $x+2 y=8$.
5. Consider the transformation $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ given by

$$
(x, y, z)=\mathbf{T}(r, \theta, z)=(r \cos \theta, r \sin \theta, z)
$$

What happens to the solid box $W=[1 / 2,1] \times[0, \pi] \times[0,1]$?
6. Let $\mathbf{T}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be given by $\mathbf{T}(u, v, w)=(2 u, 2 u+3 v+w, 3 w)$. How does this transformation change volume?

